A.3.1 Definition

A norm is a real-valued function $ \Vert\cdot\Vert$ on a linear space $ X \subseteq
\mathbb{R}^n$ such that

$\displaystyle \Vert{\mathbf{{x}}}+{\mathbf{{y}}}\Vert \quad$   $\displaystyle \leq \quad \Vert{\mathbf{{x}}}\Vert+\Vert{\mathbf{{y}}}\Vert$ (A.5)
$\displaystyle \Vert\alpha{\mathbf{{x}}}\Vert \quad$   $\displaystyle = \quad \vert\alpha\vert \Vert{\mathbf{{x}}}\Vert$ (A.6)


$\displaystyle \Vert{\mathbf{{x}}}\Vert {=}0\quad \Longleftrightarrow \quad{\mathbf{{x}}}{=}\bf {0}\quad\quad$ (A.7)

where $ {\mathbf{{x}}},{\mathbf{{y}}}\in X$ and $ \alpha \in \mathbb{R}$ .




Stefan Holzer 2007-11-19