A.3.2 Special Norms

The EUCLIDeanA.1 norm for a vector $ {\mathbf{{x}}}\in \mathbb{R}^n$ is defined as

$\displaystyle \Vert{\mathbf{{x}}}\Vert _2 {=}\sqrt{ \sum_{i=1}^n \vert x_i\vert^2}.$ (A.8)

The square of the EUCLIDean norm of a vector $ {\mathbf{{x}}}\in \mathbb{R}$ can be written as

$\displaystyle \Vert{\mathbf{{x}}}\Vert _2^2 {=}\sum_{i=1}^n \vert x_i\vert^2 {=}{\mathbf{{x}}}^{\mathcal{T}}{\mathbf{{x}}}.$ (A.9)

More generally, the $ p$ -norm of the same vector $ {{\mathbf{{x}}}}$ is defined as

$\displaystyle \Vert{\mathbf{{x}}}\Vert _p {=}\sqrt[p]{ \sum_{i=1}^n \vert x_i\vert^p}.$ (A.10)

The maximum norm of a vector is defined as

$\displaystyle \lim_{p\rightarrow\infty} \Vert{\mathbf{{x}}}\Vert _p {=}\Vert{\mathbf{{x}}}\Vert _{\infty} {=}\max\{\vert x_i\vert\}.$ (A.11)




Stefan Holzer 2007-11-19