Bibliography

[1]   A. Acovic, G. La Rosa, and Y. Sun. A Review of Hot Carrier Degradation Mechanisms in MOSFETs. Microelectronics Reliability, 36(7/8):845–869, 1996.

[2]   M. Alam. A Critical Examination of the Mechanics of Dynamic NBTI for pMOSFETs. In Proceedings of the 2003 IEEE International Electron Devices Meeting (IEDM), pages 345–348, 2003.

[3]   A. Allain and A. Kis. Electron and Hole Mobilities in Single-Layer WSe2. ACS Nano, 8(7):7180–7185, 2014.

[4]   M. Ancona. Electron Transport in Graphene from a Diffusion-Drift Perspective. IEEE Transactions on Electron Devices, 57(3):681–689, 2010.

[5]   M. Ancona, N. Saks, and D. McCarthy. Lateral Disrtribution of Hot-Carrier-Induced Interface Traps in MOSFET’s. IEEE Transactions on Electron Devices, 35(12):2221–2228, 1988.

[6]   T. Ando. Screening Effect and Impurity Scattering in Monolayer Graphene. Journal of the Physical Society of Japan, 75(7):074716, 2006.

[7]   D. Ang, Z. Teo, T. Ho, and C. Ng. Reassessing the Mechanisms of Negative-Bias Temperature Instability by Repetitive Stress/Relaxation Experiments. IEEE Transactions on Device and Materials Reliability, 11(1):19–34, 2011.

[8]   G. Angelov and K. Asparuhova. MOSFET Simulation Using Matlab Implementation of the EKV Model. In ELECTRONICS’2006, pages 167–172, 2006.

[9]   A. Asenov. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 μm MOSFET’s: A 3-D “Atomistic” Simulation Study. IEEE Transactions on Electron Devices, 45(12):2505–2513, 1998.

[10]   A. Asenov, R. Balasubramaniam, A. R. Brown, and H. Davies. RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study. IEEE Transactions on Electron Devices, 50:839–845, 2003.

[11]   A. Asenov, G. Slavcheva, A. Brown, J. Davies, and S. Saini. Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in sub-100nm MOSFETs due to Quantum Effects: a 3-D Density-Gradient Simulation Study. IEEE Transactions on Electron Devices, 48(4):722–729, 2001.

[12]   F. Banhart, J. Kotakoski, and A. Krasheninnikov. Structural Defects in Graphene. ACS Nano, 5(1):26–41, 2011.

[13]   R. Bank, W. Coughran Jr, and L. Cowsar. The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Computing and Visualization in Science, 1(3):123–136, 1998.

[14]   M. Bina. Charge Transport Models for Reliability Engineering of Semiconductor Devices. Dissertation, Technische Universität Wien, 2014.

[15]   M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, and T. Grasser. Simulation of Reliability on Nanoscale Devices. In Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 109–112, 2012.

[16]   M. Bina, S. Tyaginov, J. Franco, K. Rupp, Y. Wimmer, D. Osintsev, B. Kaczer, and T. Grasser. Predictive Hot-Carrier Modeling of n-Channel MOSFETs. IEEE Transactions on Electron Devices, 61(9):3103–3110, 2014.

[17]   K. Bolotin, K. Sikes, J. Hone, H. Stormer, and P. Kim. Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 101:096802, 2008.

[18]   F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. Ferrari. Production and Processing of Graphene and 2d Crystals. Materials Today, 15(12):564–589, 2012.

[19]   A. Brown, J. Watling, G. Roy, C. Riddet, C. Alexander, U. Kovac, and A. A. A. Martinez. Use of Density Gradient Quantum Corrections in the Simulation of Statistical Variability in MOSFETs. Journal of Computational Electronics, 9(3):187–196, 2010.

[20]   S. Butler, S. Hollen, L. Cao, Y. Cui, J. Gupta, H. Gutierrez, T. Heinz, S. Hong, J. Huang, A. Ismach, E. Johnston-Halperin, M. Kuno, V. Plashnitsa, R. Robinson, R. Suoff, S. Salahuddin, J. Shan, L. Shi, M. Spencer, M. Terrones, W. Windl, and J. Goldberger. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 7(4):2898–2926, 2013.

[21]   W. Cao, J. Kang, W. Liu, Y. Khatami, D. Sarkar, and K. Banerjee. 2D Electronics: Graphene and Beyond. In Proceedings of 43rd European Solid-State Device Research Conference (ESSDERC), pages 37–44, 2013.

[22]   A. Castro Neto and K. Novoselov. New Directions in Science and Technology: Two-Dimensional Crystals. Reports on Progress in Physics, 74:082501, 2011.

[23]   J. Chang, L. Register, and S. Banerjee. Full-Band Quantum Transport Simulations of Monolayer MoS2 Transistors: Possibility of Negative Differential Resistance. In Proceedings of 73rd Device Research Conference (DRC), pages 75–76, 2013.

[24]   A.-J. Cho, S. Yang, K. Park, S. Namgung, H. Kim, and J.-Y. Kwon. Multi-Layer MoS2 FET with Small Hysteresis by Using Atomic Layer Deposition Al2O3 as Gate Insulator. ECS Solid State Letters, 3:Q67–Q69, 2014.

[25]   H.-J. Cho, S. Lee, B.-G. Park, and H. Shin. Extraction of Trap Energy and Location from Random Telegraph Noise in Gate Leakage Current (Ig RTN) of Metal-Oxide Semiconductor Field Effect Transistor (MOSFET). Solid State Electronics, 54(4):362–367, 2010.

[26]   K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee. Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS2 Field Effect Transistors. ACS Nano, 7:7751–7758, 2013.

[27]   T. Cochet, T. Skotnicki, G. Ghibaudo, and A. Poncet. Lateral Dependence of Dopant-number Threshold Voltage Fluctuations in MOSFETs. In Proceedings of 29th European Solid-State Device Research Conference (ESSDERC), pages 680–683, 1999.

[28]   D. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu. Experimental Review of Graphene. ISRN Condensed Matter Physics, pages 1–56, 2012.

[29]   S. Das and J. Appenzeller. WSe2 Field Effect Transistors with Enhanced Ambipolar Characteristics. Applied Physics Letters, 103:103501, 2013.

[30]   S. Das, H. Chen, A. Penumatcha, and J. Appenzeller. High Performance Multilayer MoS2 Transistors with Scandium Contacts. ACS Nano Letters, 13:100–105, 2012.

[31]   M. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay. Germanene: a Novel Two-Dimensional Germanium Allotrope Akin to Graphene and Silicene. New Journal of Physics, 16(9):095002, 2014.

[32]   C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, and J. Hone. Boron Nitride Substrates for High-quality Graphene Electronics. Nature Nanotechnology, 5:722–726, 2010.

[33]   M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, C. Guerin, G. Ribes, F. Perrier, M. Mairy, and D. Roy. Paradigm Shift for NBTI Characterization in Ultra-Scaled CMOS Technologies. In Proceedings of the 2006 IEEE International Reliability Physics Symposium (IRPS), pages 735–736, 2006.

[34]   M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and A. Bravaix. Interface Trap Generation and Hole Trapping under NBTI and PBTI in Advanced CMOS Technology with a 2-nm Gate Oxide. IEEE Transactions on Devices and Materials Reliability, 4(4):715–722, 2004.

[35]   Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang. First Principles Study of Structural, Vibrational and Electronic Properties of Graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) Monolayers. Physica B, 406:2254–2260, 2011.

[36]   V. Dorgan, M.-H. Bae, and E. Pop. Mobility and Saturation Velocity in Graphene on SiO2. Applied Physics Letters, 97:082112, 2010.

[37]   R. Dreesen, K. Croes, J. Manca, W. D. Ceunick, L. D. Schepper, A. Pergoot, and G. Groeseneken. A New Degradation Model and Lifetime Extrapolation Technique for Lightly Doped Drain nMOSFETs under Hot-Carrier Degradation. Microelectronics Reliability, 41:437–443, 2001.

[38]   N. Drummond, V. Zolyomi, and V. Falko. Electrically Tunable Band Gap in Silicene. Physical Review B, 85(7):075423, 2012.

[39]   R. Edwards and K. Coleman. Graphene Synthesis: Relationship to Applications. Nanoscale, 5(1):38–51, 2013.

[40]   M. Engel, M. Steiner, A. Lombardo, A. Ferrari, H. Loehneysen, P. Avouris, and R. Krupke. Light-Matter Interaction in a Microcavity-Controlled Graphene Transistor. Nature Communications, 3:1–6, 2012.

[41]   H. Fang, S. Chuang, T. Chang, K. Takei, T. Takahashi, and A. Javey. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. ACS Nano Letters, 12:3788–3792, 2012.

[42]   T. Fang, A. Konar, H. Xing, and D. Jena. Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons. Applied Physics Letters, 91(9):092109, 2007.

[43]   G. Fiori, B. Szafranec, G. Iannaccone, and D. Neumaier. Velocity Saturation in Few-Layer MoS2 Transistor. Applied Physics Letters, 103:233509, 2013.

[44]   R. Fivaz and E. Mooser. Mobility of Charge Carriers in Semiconducting Layer Structures. Physical Review, 163:743–755, 1967.

[45]   D. Fleetwood. “Border Traps” in MOS Devices. IEEE Transactions on Nuclear Science, 39(2):269–271, 1992.

[46]   M. Fuhrer and J. Hohe. Measurements of Mobility in Dual-Gated MoS2 Transistors. Nature Nanotechnology, 8(3):146–147, 2013.

[47]   M. Furchi, D. Polyushkin, A. Pospischil, and T. Mueller. Mechanisms of Photoconductivity in Atomically Thin MoS2. ACS Nano Letters, 14:6165–6170, 2014.

[48]   M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer, and T. Mueller. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. ACS Nano Letters, 14:4785–4791, 2014.

[49]   A. Geim and I. Grigorieva. Van der Waals Heterostructures. Nature, 499:419–425, 2013.

[50]   A. Geim and K. Novoselov. The Rise of Graphene. Nature Materials, 6(3):183–191, 2007.

[51]   T. Georgiou, H. Yang, R. Jalil, J. Chapman, K. Novoselov, and A. Mishchenko. Electrical and Optical Characterization of Atomically Thin WS2. Dalton Transactions, 43:10388–10391, 2014.

[52]   S. Ghatak and A. Ghosh. Observation of Trap-Assisted Space Charge Limited Conductivity in Short Channel MoS2 Transistor. Applied Physics Letters, 103:122103, 2013.

[53]   A. Ghetti, M. Bonanomi, C. Compagnoni, A. Spinelli, A. Lacaita, and A. Visconti. Physical Modeling of Single-Trap RTS Statistical Distribution in Flash Memories. In Proceedings of the 2008 IEEE International Reliability Physics Symposium (IRPS), pages 610–615, 2008.

[54]   A. Ghetti, C. Compagnoni, A. Spinelli, and A. Visconti. Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca–Nanometer Flash Memories. IEEE Transactions on Electron Devices, 56(8):1746–1752, 2009.

[55]   D. Gillespie. Markov Processes: An Introduction for Physical Scientists. Academic Press, 1992.

[56]   W. Goes. Hole Trapping and the Negative Bias Temperature Instability. Dissertation, Technische Universität Wien, 2011.

[57]   T. Grasser. Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities. Microelectronics Reliability, 52(1):39–70, 2012.

[58]   T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel, and B. Kaczer. The ‘Permanent’ Component of NBTI: Composition and Annealing. In Proceedings of the 2011 IEEE International Reliability Physics Symposium (IRPS), pages 605–613, 2011.

[59]   T. Grasser, W. Goes, and B. Kaczer. Modeling of Dispersive Transport in the Context of Negative Bias Temperature Instability. In 2006 IEEE International Integrated Reliability Workshop Final Report (IIRW), pages 5–10, 2006.

[60]   T. Grasser, W. Goes, and B. Kaczer. Dispersive Transport and Negative Bias Temperature Instability: Boundary Conditions, Initial Conditions, and Transport Models. IEEE Transactions on Device and Materials Reliability, 8(1):79–97, 2008.

[61]   T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer. The Universality of NBTI Relaxation and its Implications for Modeling and Characterization. In Proceedings of the 2007 IEEE International Reliability Physics Symposium (IRPS), pages 268–280, 2007.

[62]   T. Grasser and B. Kaczer. Negative Bias Temperature Instability: Recoverable versus Permanent Degradation. In Proceedings of 37th European Solid-State Device Research Conference (ESSDERC), pages 127–130, 2007.

[63]   T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, J. Franco, M. Toledano-Luque, and M. Nelhiebel. The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps. IEEE Transactions on Electron Devices, 58(11):3652–3666, 2011.

[64]   T. Grasser, B. Kaczer, P. Hehenberger, W. Goes, R. O’Connor, H. Reisinger, W. Gustin, and C. Schlunder. Simultaneous Extraction of Recoverable and Permanent Components Contributing to Bias-Temperature Instability. In Proceedings of the 2007 IEEE International Electron Devices Meeting (IEDM), pages 801–804, 2007.

[65]   T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer. Switching Oxide Traps as the Missing Link Between Negative Bias Temperature Instability and Random Telegraph Noise. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), pages 1–4, 2009.

[66]   T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, and B. Kaczer. The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability. In Proceedings of the 2010 IEEE International Reliability Physics Symposium (IRPS), pages 16–25, 2010.

[67]   T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. Time-Dependent Defect Spectroscopy for Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors. Phyics Review B, 82:245318–1–245318–10, 2010.

[68]   T. Grasser, K. Rott, H. Reisinger, P.-J. Wagner, W. Gös, F. Schanovsky, M. Waltl, M. Toledano-Luque, and B. Kaczer. Advanced Characterization of Oxide Traps: The Dynamic Time-Dependent Defect Spectroscopy. In Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS), pages 1–6, 2013.

[69]   T. Grasser, P.-J. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer. Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps. In Proceedings of the 2011 IEEE International Electron Devices Meeting (IEDM), pages 27.4.1–27.4.4, 2011.

[70]   T. Grasser, M. Waltl, W. Goes, Y. Wimmer, A.-M. El-Sayed, A. Shluger, and B. Kaczer. On the Volatility of Oxide Defects: Activation, Deactivation and Transformation. In Proceedings of the 2015 IEEE International Reliability Physics Symposium (IRPS), pages 5A.3.1–5A.3.8, 2015.

[71]   A. Gupta, T. Sakthivel, and S. Seal. Recent Development in 2D Materials beyond Graphene. Progress in Material Science, 73:44–126, 2015.

[72]   S. Hagstrom, H. Lyon, and G. Somorjai. Surface Structures on the Clean Platinum (100) Surface. Physical Review Letters, 15(11):491–493, 1965.

[73]   M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim. Energy Band-gap Engineering of Graphene Nanoribbons. Physical Review Letters, 98(20):206805, 2007.

[74]   S.-J. Han, Z. Chen, A. Bol, and Y. Sun. Channel-Length-Dependent Transport Behaviors of Graphene Field-Effect Transistors. IEEE Electron Device Letters, 32(6):812–814, 2011.

[75]   D. Heh, C. Young, and G. Bersuker. Experimental Evidence of the Fast and Slow Charge Trapping/Detrapping Processes in High-k Dielectrics Subjected to PBTI Stress. IEEE Electron Device Letters, 29(2):180–182, 2008.

[76]   P. Hehenberger, H. Reisinger, and T. Grasser. Recovery of Negative and Positive Bias Temperature Stress in pMOSFETs. In 2010 IEEE International Integrated Reliability Workshop Final Report (IIRW), page 8, 2010.

[77]   P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):B864, 1964.

[78]   E. Hsieh, Y. Tsai, S. Chung, C. Tsai, R. Huang, and C. Tsai. The Understanding of Multi-level RTN in Trigate MOSFETs Through the 2D Profiling of Traps and Its Impact on SRAM Performance: A New Failure Mechanism Found. In Proceedings of the 2012 IEEE International Electron Devices Meeting (IEDM), pages 454–457, 2012.

[79]   V. Huard. Two Independent Components Modeling for Negative Bias Temperature Instability. In Proceedings of the 2010 IEEE International Reliability Physics Symposium (IRPS), pages 33–42, 2010.

[80]   V. Huard, M. Denais, and C. Parthasarathy. NBTI Degradation: From Physical Mechanisms to Modelling. IEEE Microelectronics Reliability, 46(1):1–23, 2006.

[81]   Y. Illarionov, S. Tyaginov, M. Bina, and T. Grasser. A Method to Determine the Lateral Trap Position in Ultra-Scaled MOSFETs. In Extended Abstracts of the 2013 International Conference on Solid State Devices and Materials (SSDM), pages 278–279, 2013.

[82]   S. Imam, S. Sabri, and T. Szkopek. Low-Frequency Noise and Hysteresis in Graphene Field-Effect Transistors on Oxide. Micro & Nano Letters, 5(1):37–41, 2010.

[83]   Institut für Mikroelektronik, Technische Universität Wien, Austria. MINIMOS-NT 2.1 User’s Guide, 2004.

[84]   ITRS. International Technology Roadmap for Semiconductors - 2013 Edition, 2012.

[85]   H. Jamgotchian, Y. Colignon, B. Ealet, B. Parditka, J. Hoarau, C. Girardeaux, B. Aufray, and J. Biberian. Silicene on Ag(111): Domains and Local Defects of the Observed Superstructures. Journal of Physics: Conference Series, 491(1):012001, 2014.

[86]   Y. S. Jean and C. Y. Wu. The Threshold-Voltage Model of MOSFET Devices with Localized Interface Charge. IEEE Transactions on Electron Devices, 44:441–447, 1997.

[87]   Z. Jin, J. Yao, C. Kittrell, and J. Tour. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano, 5(5):4112–4117, 2011.

[88]   J. Johns and M. Hersam. Atomic Covalent Functionalization of Graphene. Accounts of Chemical Research, 46(1):77–86, 2013.

[89]   B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin. Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification. In Proceedings of the 2005 IEEE International Reliability Physics Symposium (IRPS), pages 381–387, 2005.

[90]   B. Kaczer, P. Roussel, T. Grasser, and G. Groeseneken. Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices-Application to NBTI. IEEE Electron Device Letters, 31(5):411–413, 2010.

[91]   E. Kadantsev and P. Hawrylak. Electronic Structure of a Single MoS2 Monolayer. Solid State Communications, 152:909–913, 2012.

[92]   K. Kam and B. Parkinson. Detailed Photocurrent Spectroscopy of the Semiconducting Group VIB Transition Metal Dichalcogenides. Journal of Physical Chemistry, 86(4):463–467, 1982.

[93]   D. Kang, J. Kim, D. Lee, B.-G. Park, J. Lee, and H. Shin. Extraction of Vertical, Lateral Locations and Energies of Hot-Electrons-Induced Traps through the Random Telegraph Noise. Japanese Journal of Applied Physics, 48:04C034–1–04C034–4, 2009.

[94]   H. Kang, M. Jeong, S. Joe, B. Park, and J. Lee. Characterization of Random Telegraph Noise Generated in the Space Region in NAND Flash Memory Strings. Semiconductor Science and Technology, 29(12):125001–125006, 2014.

[95]   J. Kang, W. Liu, and K. Banerjee. High-performance MoS2 Transistors with Low Resistance Molybdenum Contacts. Applied Physic Letters, 104:093106, 2014.

[96]   A. Katsetos. Negative Bias Temperature Instability (NBTI) Recovery with Bake. IEEE Microelectronics Reliability, 48(10):1655–1659, 2008.

[97]   M. Katsnelson and K. Novoselov. Graphene: New Bridge between Condensed Matter Physics and Quantum Electrodynamics. Solid State Communications, 143:3–13, 2007.

[98]   S. Kim, J. Nah, I. Jo, D. Shahrjedi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee. Realization of a High Mobility Dual-Gated Graphene Field Effect Transistor with Al2O3 Dielectric. arXiv preprint arXiv, page 0901.2901, 2009.

[99]   A. Kretinin, Y. Cao, J. Tu, G. Yu, R. Jalil, K. Novoselov, S. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. Geim, and R. Gorbachev. Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. ACS Nano Letters, 14:3270–3276, 2014.

[100]   H.-J. Kwon, H. Kang, J. Jang, S. Kim, and C. Grigoropoulos. Analysis of Flicker Noise in Two-Dimensional Multilayer MoS2 Transistors. Applied Physics Letters, 104:083110, 2014.

[101]   D. Late, B. Liu, H. Matte, V. Dravid, and C. Rao. Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano, 6:5635–5641, 2012.

[102]   C. Lee, X. Wei, J. Kysar, and J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321(5887):385–388, 2008.

[103]   G.-H. Lee, C.-H. Lee, A. Zande, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Hone, and P. Kim. Heterostructures Based on Inorganic and Organic van der Waals Systems. APL Materials, 2:092511, 2014.

[104]   G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. Choi, D.-Y. Lee, C. Lee, W. Yoo, K. Watanabe, T. Taniguchi, C. Nockolls, P. Kim, and J. Hone. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 7:7931–7936, 2013.

[105]   S. Lee, H.-J. Cho, Y. Son, D. S. Lee, and H. Shin. Characterization of Oxide Traps Leading to RTN in High-k and Metal Gate MOSFETs. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), pages 763–766, 2009.

[106]   Y.-H. Lee, T. Linton, K. Wu, and N. Mielke. Effect of Trench Edge on pMOSFET Reliability. Microelectronics Reliability, 41(5):689–696, 2001.

[107]   A. Lelis and T. Oldham. Time Dependence of Switching Oxide Traps. IEEE Transactions on Nuclear Science, 41(6):1835–1842, 1994.

[108]   M. Lemme, T. Echtermeyer, M. Baus, and H. Kurz. A Graphene Field Effect Device. IEEE Electron Device Letters, 27(4):1–12, 2007.

[109]   P. Lenahan. Atomic Scale Defects Involved in MOS Reliability Problems. Microelectronic Engineering, 69(2):173–181, 2003.

[110]   T. Li, G. Du, B. Zhang, and Z. Zeng. Scaling Behavior of Hysteresis in Multilayer MoS2 Field Effect Transistors. Applied Physics Letters, 105(9):093107, 2014.

[111]   X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 319:1229–1232, 2008.

[112]   Y.-M. Lin, K. Jenkins, A. Valdes-Garcia, J. Small, D. Farmer, and P. Avouris. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 9(1):422–426, 2009.

[113]   B. Liu, M. Yang, C. Zhan, Y. Yang, and Y.-C. Yeo. Bias Temperature Instability (BTI) Characteristics of Graphene Field-Effect Transistors. In Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications, pages 1–2, 2011.

[114]   H. Liu, A. Neal, Y. Du, and D. Piede. Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts. In Abstracts of Electrochemical Society Meeting, page 2163, 2013.

[115]   H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. Ye. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 8(4):4033–4041, 2014.

[116]   W. Liu, X. Sun, Z. Fang, Z. Wang, X. Tran, F. Wang, L. Wu, G. Ng, J. Zhang, J. Wei, H. Zhu, and H. Yu. Positive Bias-Induced V th Instability in Graphene Field Effect Transistors. IEEE Electron Device Letters, 33(3):339–341, 2012.

[117]   W. Liu, X. Sun, X. Tran, Z. Fang, Z. Wang, F. Wang, L. Wu, J. Zhang, J. Wei, H. Zhu, and H. Yu. Observation of the Ambient Effect in BTI Characteristics of Back-Gated Single Layer Graphene Field Effect Transistors. IEEE Transactions on Electron Devices, 60(8):2682–2686, 2013.

[118]   O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nature Nanotechnology, 8(7):497–501, 2013.

[119]   O. Madelung. Introduction to Solid-State Theory. In Springer Series in Solid-State Sciences, 1996.

[120]   K. Mak, L. C., J. Hone, J. Shan, and T. Heinz. Atomically Thin MoS2: a New Direct-Gap Semiconductor. Physical Review Letters, 105(13):136805, 2010.

[121]   S. Markov, S. Amoroso, L. Gerrer, F. Adamu-Lema, and A. Asenov. Statistical Interactions of Multiple Oxide Traps under BTI Stress of Nanoscale MOSFETs. IEEE Electron Device Letters, 34(5):686–688, 2013.

[122]   R. Matte, A. Gomathi, A. Manna, D. Late, R. Datta, S. Pati, and C. Rao. MoS2 and WS2 Analogues of Graphene. Angewandte Chemie, 122(24):4153–4156, 2010.

[123]   J. May. Platinum Surface LEED Rings. Surface Science, 17(1):267–270, 1969.

[124]   S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C. Hinkle, M. Kim, and R. Wallace. HfO2 on MoS2 by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability. ACS Nano, 7(11):10354–10361, 2013.

[125]   I. Meric, C. Dean, S.-J. Han, L. Wang, K. A. Jenkins, J. Hone, and K. L. Shepard. High-frequency Performance of Graphene Field-Effect Transistors with Saturating IV-Characteristics. In Proceedings of the 2011 IEEE International Electron Devices Meeting (IEDM), pages 2.1.1–2.1.4, 2011.

[126]   I. Meric, C. Dean, A. Young, J. Hone, P. Kim, and K. Shepard. Graphene Field-Effect Transistors Based on Boron Nitride Gate Dielectrics. In Proceedings of the 2010 IEEE International Electron Devices Meeting (IEDM), pages 23.2.1–23.2.4, 2010.

[127]   J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D. Gaskill. Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates. IEEE Electron Device Letters, 30(6):650–652, 2009.

[128]   A. Morgan and G. Somorjai. Low Energy Electron Diffraction Studies of Gas Adsorption on the Platinum (100) Single Crystal Surface. Surface Science, 12(3):405–425, 1968.

[129]   R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim. Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320(5881):1308, 2008.

[130]   R. Nair, W. Ren, R. Jalil, I. Riaz, V. Kravets, L. Britnell, P. Blake, F. Schedin, A. Mayorov, S. Yuan, M. Katsnelson, H. Cheng, W. Strupinski, L. Bulusheva, A. Okotrub, I. Grigorieva, A. Grigorenko, K. Novoselov, and A. Geim. Fluorographene: A Two-Dimensional Counterpart of Teflon. Chemical Reviews, 6(24):2877–2884, 2010.

[131]   D. Novikov. Numbers of Donors and Acceptors from Transport Measurements in Graphene. Applied Physics Letters, 91:102102, 2007.

[132]   K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438(7065):197–200, 2005.

[133]   K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666–669, 2004.

[134]   K. Novoselov and A. Neto. Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties. Physica Scripta, T146:014006, 2012.

[135]   M. Osada and T. Sasaki. Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics from Nanocrystal Building Blocks. Advanced Materials, 24:210–228, 2012.

[136]   D. Pacile, J. Meyer, C. Girit, and A. Zettl. The Two-Dimensional Phase of Boron Nitride: Few-Atomic-Layer Sheets and Suspended Membranes. Applied Physics Letters, 92:133107, 2008.

[137]   S. Park, S. Lee, Y. Kang, B.-G. Park, J.-H. Lee, J. Lee, G. Jin, and H. Shin. Extracting Accurate Position and Energy Level of Oxide Trap Generating Random Telegraph Noise(RTN) in Recessed Channel MOSFET’s. In Proceedings of 40th European Solid-State Device Research Conference (ESSDERC), pages 337–340, 2010.

[138]   S. Park and R. Ruoff. Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4(4):217–224, 2009.

[139]   W. Park, Y. Lee, J. Kim, S. Lee, C. Kang, C. Cho, S. Lim, U. Jung, W. Hong, and B. Lee. Reliability Characteristics of MoS2 FETs. In Extended Abstracts of the 2013 International Conference on Solid State Devices and Materials(SSDM), pages 684–685, 2013.

[140]   H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang. Electrical Characterization of Back-gated Bi-layer MoS2 Field-effect Transistors and the Effect of Ambient on Their Performances. Applied Physics Letters, 100:123104, 2012.

[141]   B. Radisavljevic, A. Radenovic, J. Berivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 6:147–150, 2011.

[142]   B. Radisavljevic, M. Whitwick, and A. Kis. Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 5:9934–9938, 2011.

[143]   S. Rangan, N. Mielke, and E. Yeh. Universal Recovery Behavior of Negative Bias Temperature Instability. In Proceedings of the 2003 IEEE International Electron Devices Meeting (IEDM), pages 341–344, 2003.

[144]   P. Rani and V. Jindal. Designing Band Gap of Graphene by B and N Dopant Atoms. RSC Advances, 3(3):802–812, 2013.

[145]   E. Reich. Phosphorene Excites Materials Scientists. Nature, 506:19, 2014.

[146]   H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder. Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast V th-Measurements. In Proceedings of the 2006 IEEE International Reliability Physics Symposium (IRPS), pages 448–453, 2006.

[147]   H. Reisinger, G. T., G. W., and S. C. The Statistical Analysis of Individual Defects Constituting NBTI and its Implications for Modeling DC- and AC-Stress. In Proceedings of the 2010 IEEE International Reliability Physics Symposium (IRPS), pages 7–15, 2010.

[148]   H. Reisinger, R. Vollertsen, P. Wagner, T. Huttner, A. Martin, S. Aresu, W. Gustin, T. Grasser, and C. Schlünder. The Effect of Recovery on NBTI Characterization of Thick Non-Nitrided Oxides. In 2008 IEEE International Integrated Reliability Workshop Final Report (IIRW), pages 1–6, 2008.

[149]   G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo. Review of High-k Dielectrics Reliability Issues. IEEE Transactions on Device and Materials Reliability, 5(1):5–19, 2005.

[150]   J. Robertson and Y. Guo. Schottky Barrier Heights and Band Alignments in Transition Metal Dichalcogenides. In Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (SSDM), pages 716–717, 2015.

[151]   K. Rott, H. Reisinger, S. Aresu, C. Schlunder, K. Kolpin, W. Gustin, and T. Grasser. New Insights on the PBTI Phenomena in SiON pMOSFETs. IEEE Microelectronics Reliability, 52(9):1891–1894, 2012.

[152]   G. Rzepa, W. Goes, G. Rott, K. K. M. Rott, C. Kernstock, B. Kaczer, H. Reisinger, and T. Grasser. Physical Modeling of NBTI: From Individual Defects to Devices. In Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 81–84, 2014.

[153]   N. Sano and M. Tomizawa. Random Dopant Model for Three-Dimensional Drift-Diffusion Simulations in Metal-Oxide-Semiconductor Field-Effect-Transistors. IEEE Transactions on Electron Devices, 79(14):2267–2269, 2001.

[154]   A. Scholten, L. Tiemeijer, R. van Langevelde, R. Havens, A. Zegers-van Duijnhoven, and V. Venezia. Noise Modeling for RF CMOS Circuit Simulation. IEEE Transactions on Electron Devices, 50(3):618–632, 2003.

[155]   K. Schuegraf and C. Hu. Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation. IEEE Transactions on Electron Devices, 41(5):761–767, 1994.

[156]   K. Schuegraf and C. Hu. Reliability of Thin SiO2. Semiconductor Science and Technology, 9(5):989–1004, 1994.

[157]   J. Seol, I. Jo, A. Moore, L. Lindsay, Z. Aitken, M. a. X. Pettes, Z. Yao, R. Huang, D. Broido, N. Mingo, R. Ruoff, and L. Shi. Two-Dimensional Phonon Transport in Supported Graphene. Science, 328(5975):213–216, 2010.

[158]   R. Shangqing, Y. Hong, T. Bo, X. Hao, L. Weichun, T. Zhaoyun, X. Yefeng, X. Jing, W. Dahai, L. Junfeng, Y. Jiang, Z. Chao, C. Dapeng, Y. Tianchun, and W. Wenwu. Characterization of Positive Bias Temperature Instability of NMOSFET with High-k/Metal Gate Last Process. Journal of Semiconductors, 36(1):014007, 2015.

[159]   M. Siddiqui, R. Siddiqui, and Q. Khosru. Effects of Interface Traps and Oxide Traps on Gate Capacitance of MOS Devices with Ultrathin (EOT ~ 1 nm) High-k Stacked Gate Dielectrics. TENCON 2009 IEEE Region 10 Conference, pages 1–5, 2009.

[160]   A. Smith, F. Niklaus, A. Paussa, S. Vaziri, A. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M. Lemme. Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Letters, 13(7):3237–3242, 2013.

[161]   A. Stesmans. Dissociation Kinetics of Hydrogen-Passivated Pb Defects at the (111)Si/SiO2 Interface. Physical Review B, 61(12):8393–8403, 2000.

[162]   R. Stratton. Diffusion of Hot and Cold Electrons in Semiconductor Barriers. Physical Review, 126(6):2002–2014, 1962.

[163]   R. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. Ferrari, P. Avouris, and M. Steiner. Electroluminescence in Single Layer MoS2. ACS Nano Letters, 13(4):1416–1421, 2013.

[164]   S. Thiele, J. Schaefer, and F. Schwierz. Modeling of Graphene Metal-Oxide-Semiconductor Field-Effect Transistors with Gapless Large-Area Graphene Channels. Journal of Applied Physics, 107:094505, 2010.

[165]   S. Thiele and F. Schwierz. Modeling of Steady State Characteristics of Large-Area Graphene Field-Effect Transistors. Journal of Applied Physics, 107:034506, 2011.

[166]   M. Toledano-Luque, B. Kaczer, T. Grasser, P. Roussel, J. Franco, and G. Groeseneken. Toward a Streamlined Projection of Small Device Bias Temperature Instability Lifetime Distributions. Journal of Vacuum Science & Technology B, 31(1):01A114–1–01A114–4, 2013.

[167]   M. Toledano-Luque, B. Kaczer, P. Roussel, M. Cho, T. Grasser, and G. Groeseneken. Temperature Dependence of the Emission and Capture Times of SiON Individual Traps after Positive Bias Temperature Stress. In Book of Abstracts of Workshop on Dielectrics in Microelectronics (WODIM), pages 1–2, 2010.

[168]   M. Toledano-Luque, B. Kaczer, P. Roussel, M. Cho, T. Grasser, and G. Groeseneken. Temperature Dependence of the Emission and Capture Times of SiON Individual Traps after Positive Bias Temperature Stress. Journal of Vacuum Science & Technology B, 29(1):01AA04–1–01AA04–5, 2011.

[169]   S. Tsujikawa, T. Mine, K. Watanabe, Y. Shimamoto, R. Tsuchiya, K. Ohnishi, T. Onai, J. Yugami, and S. Kimura. Negative Bias Temperature Instability of pMOSFETs with Ultra-Thin SiON Gate Dielectrics. In Proceedings of the 2003 IEEE International Reliability Physics Symposium (IRPS), pages 183–188, 2003.

[170]   S. Tsujikawa and J. Yugami. Positive Charge Generation Due to Species of Hydrogen During NBTI Phenomenon in pMOSFETs With Ultra-Thin SiON Gate Dielectrics. Microelectronics Reliability, 45(1):65–69, 2005.

[171]   S. Tyaginov, I. Starkov, H. Enichlmair, J. Park, C. Jungemann, and T. Grasser. Physics-Based Hot-Carrier Degradation Models. ECS Transactions, pages 321–352, 2011.

[172]   S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser. Interface Traps Density-of-States as a Vital Component for Hot-Carrier Degradation Modeling. In Proceedings of the 21st European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF), pages 1267–1272, 2010.

[173]   S. Tyaginov, V. Sverdlov, I. Starkov, W. Goes, and T. Grasser. Impact of O-Si-O Bond Angle Fluctuations on the Si-O Bond-Breakage Rate. Microelectronics Reliability, 49:998–1002, 2009.

[174]   A. van der Zande, P. Huang, D. Chenet, T. Berkelbach, Y. You, G. Lee, T. Heinz, D. Reichmann, D. Muller, and J. Hone. Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide. Nature Materials, 12:554–561, 2013.

[175]   L. Vandelli, L. Larcher, D. Veksler, A. Padovani, G. Bersuker, and K. Matthews. A Charge-Trapping Model for the Fast Component of Positive Bias Temperature Instability (PBTI) in High-Gate-Stacks. IEEE Transactions on Electron Devices, 61(7):2287–2293, 2014.

[176]   S. Vaziri, G. Lupina, C. Henkel, A. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, and M. Lemme. A Graphene-Based Hot Electron Transistor. Nano Letters, 13:1435–1439, 2013.

[177]   S. Vaziri, G. Lupina, A. Paussa, A. D. Smith, C. Henkel, G. Lippert, J. Dabrowski, W. Mehr, M. Östling, and M. Lemme. A Manufacturable Process Integration Approach for Graphene Devices. Solid-State Electronics, 84:185–190, 2013.

[178]   G. Venugopal, K. Krishnamoorthy, and S. Kim. Investigation of Transfer Characteristics of High Performance Graphene Flakes. Journal of Nanoscience and Nanotechnology, 13:3515–3518, 2013.

[179]   P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskasis, M. Ansesio, A. Resta, B. Ealet, and G. Le Lay. Silicene: Complexing Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 108:155501, 2012.

[180]   P. Wallace. The Band Theory of Graphite. Physical Review, 71(9):622–634, 1947.

[181]   M. Waltl, P.-J. Wagner, H. Reisinger, K. Rott, and T. Grasser. Advanced Data Analysis Algorithms for the Time-Dependent Defect Spectroscopy of NBTI. In 2012 IEEE International Integrated Reliability Workshop Final Report (IIRW), pages 74–79, 2012.

[182]   V. Wang, R. Liu, H. He, C. Yang, and L. Ma. Hybrid Functional with Semi-Empirical van der Waals Study of Native Defects in Hexagonal BN. Solid State Communications, 177:74–79, 2013.

[183]   Q. Wei and X. Peng. Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus. Applied Physics Letters, 104(25):251915, 2014.

[184]   A. Wettstein, A. Schenk, and W. Fichtner. Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids. IEEE Transactions on Electron Devices, 48(2):279–284, 2001.

[185]   J. Wilson and A. Yoffe. Transition Metal Dichalcogenides Discussion and Interpretation of Observed Optical, Electrical and Structural Properties. Advances in Physics, 18:193–335, 1969.

[186]   G. Wirth, J. Koh, R. da Silva, R. Thewes, and R. Bredlow. Modeling of Statistical Low-Frequency Noise of Deep-Submicron MOSFETs. IEEE Transactions on Electron Devices, 52(7):1576–1588, 2005.

[187]   H. Wong and Y. Taur. Three-Dimensional ’Atomistic’ Simulation of Discrete Random Dopant Distribution Effects in Sub-0.1 um MOSFETs. In Proceedings of the 1993 IEEE International Electron Devices Meeting (IEDM), pages 705–708, 1993.

[188]   C. Wu, S. Yang, H. Chen, F. Tseng, and C. Shih. An Analytic and Accurate Model for the Threshold Voltage of Short Channel MOSFETs in VLSI. Solid-State Electronics, 27:651–658, 1984.

[189]   F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris. The Origins and Limits of Metal-Graphene Junction Resistance. Nature Nanotechnology, 6(3):179–184, 2011.

[190]   M. Xu, T. Liang, M. Shi, and H. Chen. Graphene-Like Two-Dimensional Materials. Chemical Reviews, 113(5):3766–3798, 2013.

[191]   S. Xu and Q. Zhang. Causes of Asymmetry in Graphene Transfer Characteristics. In 2010 IEEE International Workshop on Junction Technology (IWJT), pages 1–3, 2010.

[192]   H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 336:1140–1143, 2012.

[193]   S. Yang, S. Park, S. Jang, H. Kim, and J.-Y. Kwon. Electrical Stability of Multilayer MoS2 Field-Effect Transistor under Negative Bias Stress at Various Temperatures. Physica Status Solidi RRL, 8:714–718, 2014.

[194]   Y. Yonamoto. Similarity and Difference in Temperature Dependent Recovery of HCS and BTI. In Proceedings of the 2014 IEEE International Reliability Physics Symposium (IRPS), pages XT–1, 2014.

[195]   Y. Yoon, K. Ganapathi, and S. Salahuddin. How Good Can Monolayer MoS2 Transistors Be? ACS Nano Letters, 11:3768–3773, 2011.

[196]   G. Zebrev, A. Tselykovskiy, and V. Turin. Physics-Based Compact Modeling of Double-Gate graphene Field-Effect Transistor Operation Including Description of Two Saturation Modes. arXiv preprint arXiv, page 1110.6319, 2011.

[197]   X. Zou, J. Wang, C. Chiu, Y. Wu, X. Xiao, C. Jiang, W. Wu, L. Mai, T. Chen, J. Li, and J. Ho. Interface Engineering for High-Performance Top-Gated MoS2 Field-Effect Transistors. Advanced Materials, 26(36):6255–6261, 2014.