next up previous contents
Next: 4.2.4 In-Lens Filters Up: 4.2 Lens Aberrations and Previous: 4.2.2 Power Series Representation

4.2.3 Zernike Polynomials for General Aberration Terms

General aberration terms are characterized most conveniently by the circle polynomials $ \mathcal {Z}$bc($ \rho$,$ \phi$) of Zernike [11, pp. 464-468]. The aberration function $ \Phi$(n, m) is expanded as follows:

$\displaystyle \Phi(n,m)= \lambda\!\sum_{\begin{Sb}a,b\ge0,\;c\\ [1mm]a-\vert c\...
...mathrm{even}\end{Sb}} \!\Delta_{abc}A_{ac}\mathcal{Z}_b^c(\rho_{nm},\phi_{nm}).$ (4.66)

As before, $ \Delta_{abc}^{}$ refers to the maximal optical path difference of the lens measured in units of the wavelength, while the factor Aac is determined by the object location (rocos$ \phi_{o}^{}$, rosin$ \phi_{o}^{}$),

$\displaystyle A_{ac} = \begin{cases}r_o^{2a+\vert c\vert}\cos(c\phi_o) & \quad{...
...,} \\ r_o^{2a+\vert c\vert}\sin(c\phi_o) & \quad{} \text{otherwise.}\end{cases}$ (4.67)

The orientation of the incident wavevector is given by the polar coordinates ($ \rho_{nm}^{}$,$ \phi_{nm}^{}$),

$\displaystyle \rho_{nm} = \sqrt{\dot{\iota}^2_{x,n} + \dot{\iota}^2_{y,m}}{}\qq...
...{} \phi_{nm} = \arctan\left(\frac{\dot{\iota}_{x,n}}{\dot{\iota}_{y,m}}\right).$ (4.68)

The Zernike polynomials in real-valued form are defined as

$\displaystyle \mathcal{Z}_b^c(\rho,\phi) \overset{\mathrm{def}}{=}\begin{cases}...
... [2mm] \mathcal{R}_b^c(\rho) \sin(c\phi) & \quad{} \text{otherwise,}\end{cases}$ (4.69)

whereby $ \mathcal {R}$bc($ \rho$) are the so-called orthogonal radial polynomials given by [11, p. 465]

 
$\displaystyle \mathcal{R}_b^c(\rho) = \sum_{k=0}^{\frac{b-c}{2}} (-1)^k \frac{(b-k)!}{k!\left(\frac{b+c}{2}-k\right)!\left(\frac{b-c}{2}-k\right)!} \rho^{b-2k}.$ (4.70)

A thorough discussion can be found in, e.g., [11, Appendix VII]. In Table 4.2 the explicit forms of (4.79) for the first few values of the indices b and c are listed. The normalization has been chosen so that $ \mathcal {R}$bc(1) = 1 for all permissible values of b and c.


 
Table 4.2: Radial polynomials $ \mathcal {R}$bc($ \rho$) for b$ \le$7, c$ \le$7 (after [11, p. 465]).
 

c $ \backslash$b 0 1 2 3 4 5 6 7
0 1   2$ \rho^{2}_{}$ - 1   6$ \rho^{4}_{}$ - 6$ \rho^{2}_{}$ + 1   20$ \rho^{6}_{}$ - 30$ \rho^{4}_{}$ + 12$ \rho^{2}_{}$ - 1  
1   $ \rho$   3$ \rho^{3}_{}$ - 2$ \rho$   10$ \rho^{5}_{}$ - 12$ \rho^{3}_{}$ + 3$ \rho$   35$ \rho^{7}_{}$ - 60$ \rho^{5}_{}$ + 30$ \rho^{3}_{}$ - 4$ \rho$
2     $ \rho^{2}_{}$   4$ \rho^{4}_{}$ - 3$ \rho^{2}_{}$   15$ \rho^{6}_{}$ - 20$ \rho^{4}_{}$ + 6$ \rho^{2}_{}$  
3       $ \rho^{3}_{}$   5$ \rho^{5}_{}$ - 4$ \rho^{3}_{}$   21$ \rho^{7}_{}$ - 30$ \rho^{5}_{}$ + 10$ \rho^{3}_{}$
4         $ \rho^{4}_{}$   6$ \rho^{6}_{}$ - 5$ \rho^{4}_{}$  
5           $ \rho^{5}_{}$   7$ \rho^{7}_{}$ - 6$ \rho^{5}_{}$
6             $ \rho^{6}_{}$  
7               $ \rho^{7}_{}$



The lens aberrations have a variety of impacts on the lithographic performance [117,119]. The most severe problems are shifts in the image position, image asymmetry, reduction of the process window, and the appearance of undesirable imaging artifacts. Aerial image simulation provides a powerful tool to investigate most of them. In Table 4.3 the imaging consequences of the first 11 Zernike polynomials are listed.


 
Table 4.3: Imaging consequences of first 11 Zernike polynomials (after [120]).
 

(b, c) Name Imaging consequence
(0, 0) Piston None
(1, $ \pm$ 1) Lateral translation Shift of image, independent of pattern
(2, 0) Defocus Image degradation
(2, $ \pm$ 2) Astigmatism (hor./vert. or $ \pm$ 45o) Orientation dependent shift of focus
(3, $ \pm$ 1) Lateral coma Image asymmetry and pattern dependent shift of image
(3, $ \pm$ 3) Three-leaf clover (rotated 30o) Imaging anomalies with threefold symmetry
(4, 0) Third-order spherical Pattern dependent focus shift




next up previous contents
Next: 4.2.4 In-Lens Filters Up: 4.2 Lens Aberrations and Previous: 4.2.2 Power Series Representation
Heinrich Kirchauer, Institute for Microelectronics, TU Vienna
1998-04-17