Literaturverzeichnis



next up previous contents
Next: Eigene Veröffentlichungen Up: Dissertation Hans Kosina Previous: 7.2.7 Die Kopplungskoeffizienten

Literaturverzeichnis

1
ANTOGNETTI, P., AND MASSOBRIO, G. Semiconductor Device Modeling with SPICE. McGraw-Hill Book Company, 1988.

2
BACCARANI, G. Physics of Submicron Devices. In Proc: VLSI Process and Device Modeling Symposium (1983), Katholieke Universiteit Leuven, pp. 1-23.

3
BACCARANI, G., AND WORDEMAN, M.R. An Investigation of Steady-State Velocity Overshoot in Silicon. Solid-State Electronics 28, 4 (1985), 407-416.

4
BANDYOPADHYAY, S., KLAUSMEIER-BROWN, M.E., MAZIAR, C.M., DATTA, S., AND LUNDSTROM, M. A Rigorous Technique to Couple Monte Carlo and Drift-Diffusion Models for Computationally Efficient Device Simulation. IEEE Transactions on Electron Devices ED-34, 2 (Feb. 1987), 392-399.

5
BARKER, J.R. Quantum Tranport Theory. In: Physics of Nonlinear Transport in Semiconductors, D. Ferry, J. Barker, and C. Jacoboni, Eds. Plenum Press, 1980, pp. 127-151.

6
BLOTEKJAER, K. Transport Equations for Electrons in Two-Valley Semiconductors. IEEE Transactions on Electron Devices ED-17, 1 (Jan. 1970), 38-47.

7
BORDELON, T.J., WANG, X.L., MAZIAR, C.M., AND TASH, A.F. An Efficient Non-Parabolic Formulation of the Hydrodynamic Model For Silicon Device Simulation. In Proc: International Electron Devices Meeting (1990), pp. 353-356.

8
BRONSTEIN, I.N., AND SEMENDJAJEW, K.A. Taschenbuch der Mathematik. Teubner Verlag, 1983.

9
BROOKS, H. Scattering by Ionized Impurities in Semiconductors. Physical Review 83 (1951), 879.

10
BRUNETTI, R., JACOBONI, C., VENTURI, F., SANGIORGI, E., AND RICCÒ, B. A Many-Band Silicon Model for Hot-Electron Transport at High Energies. Solid-State Electronics 32, 12 (1989), 1663-1667.

11
CANALI, C., OTTAVIANI, G., AND QUARANTA, A.A. Drift Velocity of Electrons and Holes and Associated Anisotropic Effects in Silicon. J. Phys. Chem. Solids 32 (1971), 1707-1720.

12
CANALI, C., JACOBONI, C., NAVA, F., OTTAVIANI, G., AND QUARANTA, A.A. Electron Drift Velocity in Silicon. Physical Review B 12, 4 (Aug. 1975), 2265-2284.

13
CAUGHEY, D.M., AND THOMAS, R.E. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proceedings of the IEEE 52 (1967), 2192-2193.

14
CHATTOPADHYAY, D., AND QUEISSER, H.J. Electron Scattering by Ionized Impurities in Semiconductors. Review of Modern Physics 53, 4 (Okt. 1981), 745-768.

15
CHEN, D., KAN, E.C., RAVAIOLI, U., SHU, C.W., AND DUTTON, R.W. An Improved Energy Transport Model Including Nonparabolicity and Non-Maxwellian Distribution Effects. IEEE Electron Device Letters 13, 1 (Jan. 1992), 26-28.

16
CHENG, D.Y., HWANG, C.G., AND DUTTON, R.W. PISCES-MC: A Multiwindow, Multimethod 2-D Device Simulator. IEEE Transactions on Computer-Aided Design 7, 9 (Sep. 1988), 1017-1026.

17
CHU-HAO, ZIMMERMANN, J., CHAREF, M., FAUQUEMBERGUE, R., AND CONSTANT, E. Monte Carlo Study of Two-Dimensional Electron Gas Transport in Si-MOS Devices. Solid-State Electronics 28, 8 (1985), 733-740.

18
CONWELL, E., AND WEISSKOPF, V.F. Theory of Impurity Scattering in Semiconductors. Physical Review 77, 3 (1950), 388.

19
COOK, R.K., AND FREY, J. An Efficient Technique for Two-Dimensional Simulation of Velocity Overshoot Effects in Si and GaAs Devices. COMPEL 1, 2 (1982), 65-87.

20
DAS, A., AND LUNDSTROM, M.S. A Scattering Matrix Approach to Advanced Bipolar Device Simulation. In Proc: 22nd Conference on Solid State Devices and Materials (Sendai, Aug. 1990), Komiyama Printing Co., Ltd., pp. 147-150.

21
FAWCETT, W., BOARDMAN, A.S., AND SWAIN, S. Monte Carlo Determination of Electron Transport Properties in Gallium Arsenide. J. Phys. Chem. Solids 31 (1970), 1963-1990.

22
FENG, Y.K., AND HINTZ, A. Simulation of Submicrometer GaAs MESFET's Using a Full Dynamic Transport Model. IEEE Transactions on Electron Devices 35, 9 (Sep. 1988), 1419-1431.

23
FERRY, D.K. Modeling of Carrier Transport in the Finite Collision Duration Regime: Effects in Submicron Semiconductor Devices. In: Physics of Nonlinear Transport in Semiconductors, D. Ferry, J. Barker, and C. Jacoboni, Eds. Plenum Press, 1980, pp. 577-588.

24
FISCHETTI, M.V., AND LAUX, S.E. Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects. Physical Review B 38, 14 (Nov. 1988), 9721-9745.

25
FISCHETTI, M.V., AND LAUX, S.E. Monte Carlo Simulation of Submicron Si MOSFETs. In Proc: Simulation of Semiconductor Devices and Processes (Bologna, Sep. 1988), G. Baccarani and M. Rudan, Eds., pp. 349-368.

26
FORGHIERI, A., GUERRIERI, R., CIAMPOLINI, P., GNUDI, A., RUDAN, M., AND BACCARANI, G. A New Discretization Strategy of the Semiconductor Equations Comprising Momentum and Energy Balance. IEEE Transactions on Computer-Aided Design 7, 2 (Feb. 1988), 231-242.

27
FRüHWIRTH, R., AND REGLER, M. Monte Carlo Methoden, Eine Einführung. B.I. Wissenschaftsverlag, Mannheim, Wien, Zürich, 1983.

28
GARDNER, C.L., JEROME, J.W., AND ROSE, D.J. Numerical Methods for the Hydrodynamic Device Model: Subsonic Flow. IEEE Transactions on Computer-Aided Design 8, 5 (Mai 1989), 501-507.

29
GARDNER, C.L. Numerical Simulation of a Steady-State Electron Shock Wave in a Submicron Semiconductor Device. IEEE Transactions on Electron Devices 38, 2 (Feb. 1991), 392-398.

30
GNUDI, A., AND ODEH, F. An Efficient Discretization Scheme for the Energy-Continuity Equation in Semiconductors. In Proc: Simulation of Semiconductor Devices and Processes (Bologna, Sep. 1988), G. Baccarani and M. Rudan, Eds., pp. 387-390.

31
GOLDSMAN, N., AND FREY, J. Efficient and Accurate Use of the Energy Transport Method in Device Simulation. IEEE Transactions on Electron Devices 35, 9 (Sep. 1988), 1524-1529.

32
GRAWERT, G. Quantenmechanik. Studien-Texte. AULA-Verlag, Wiesbaden, 1985.

33
HÄNSCH, W., AND MIURA-MATTAUSCH, M. A New Current Relation for Hot Electron Transport. In Proc: 4th International NASECODE Conference (1985), H. Miller, Ed., pp. 311-314.

34
HÄNSCH, W., AND MIURA-MATTAUSCH, M. The Hot-Electron Problem in Small Semiconductor Devices. Journal of Applied Physics 60, 2 (Juli 1986), 650-656.

35
HÄNSCH, W., AND SELBERHERR, S. MINIMOS 3: A MOSFET Simulator that Includes Energy Balance. IEEE Transactions on Electron Devices ED-34, 5 (Mai 1987), 1074-1078.

36
HÄNSCH, W., ORLOWSKI, M., AND WEBER, W. The Hot-Electron Problem in Submicron MOSFET. Supplement au Journal de Physique (ESSDERC Conference) C4, 9 (1988), 597-606.

37
HÄNSCH, W., AND JACOBS, H. Enhanced Transconductance in Deep Submicrometer MOSFET. IEEE Electron Device Letters 10, 7 (Juli 1989), 285-287.

38
HÄNSCH, W. The Drift-Diffusion Equation and Its Applications in MOSFET Modeling. Computational Microelectronics. Springer Verlag, Wien New York, 1991.

39
HESS, K. Comment on ``Effect of Collisional Broadening on Monte Carlo Simulations of High-Field Transport in Semiconductor Devices''. IEEE Electron Device Letters EDL-2, 11 (Nov. 1981), 297-298.

40
HESS, K. Advanced Theory of Semiconductor Devices. Prentice Hall Series in Solid State Physical Eelectronics. Prentice Hall, 1988.

41
HEYWANG, W., AND PöTZL, H.W. Bänderstruktur und Stromtransport, vol. 3 of Halbleiter-Elektronik. Springer Verlag, 1976.

42
HIGMAN, J.M., HESS, K., HWANG, C.G., AND DUTTON, R.W. Coupled Monte Carlo-Drift Diffusion Analysis of Hot-Electron Effects in MOSFET's. IEEE Transactions on Electron Devices 36, 5 (Mai 1989), 930-937.

43
HOCKNEY, R.W., AND EASTWOOD, J. W. Computer Simulation Using Particles. Adam Hilger, Bristol and Philadelphia, 1988.

44
HWANG, C.G., AND DUTTON, R.W. Improved Physical Modeling of Submicron MOSFET's Based on Parameter Extraction Using 2-D Simulation. IEEE Transactions on Computer-Aided Design 8, 4 (Apr. 1989), 370-379.

45
IIZUKA, T., AND FUKUMA, M. Carrier Transport Simulator for Silicon Based on Carrier Distribution Function Evolutions. Solid-State Electronics 33, 1 (1990), 27-34.

46
INSTITUT FüR MIKROELEKTRONIK. MINIMOS 5.0 User's Guide. Technische Universität Wien, März 1990.

47
INSTITUT FüR MIKROELEKTRONIK. PROMIS 1.5. Technische Universität Wien, 1990.

48
JACOBONI, C., MINDER, R., AND MAJNI, G. Effects of Band Non-Parabolicity on Electron Drift Velocity in Silicon Above Room Temperature. J. Phys. Chem. Solids 36 (1975), 1129-1133.

49
JACOBONI, C., AND REGGIANI, L. The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Review of Modern Physics 55, 3 (Juli 1983), 645-705.

50
JACOBONI, C., AND LUGLI, P. The Monte Carlo Method for Semiconductor Device Simulation. Computational Microelectronics. Springer Verlag, 1989.

51
JAECKLE, J. Einführung in die Transporttheorie. Vieweg, 1978.

52
JAGGI, R., AND WEIBEL, H. High-Field Electron Drift Velocities and Current Densities in Silicon. Helv.Phys.Acta 42 (1969), 631-632.

53
KATO, K. Hot-Carrier Simulation for MOSFET's Using a High-Speed Monte Carlo Method. IEEE Transactions on Electron Devices 35, 8 (Aug. 1988), 1344-1350.

54
KITTEL, CH., Ed. Einführung in die Festkörperphysik. Oldenburg, 1988.

55
KOMETER, K., ZANDLER, G., AND VOGL, P. Cellular Automata Simulation of Stationary and Transient High-Field Transport in Sub-Micron Si and GaAs Devices. In Proc: Semiconductor Science and Technology (1991), HCIS-7, Nara.

56
KOSINA, H., AND SELBERHERR, S. Coupling of Monte Carlo and Drift Diffusion Method with Applications to Metal Oxide Semiconductor Field Effect Transistors. Japanese Journal of Applied Physics 29, 12 (Dez. 1990), L2283-L2385.

57
KOSINA, H., LINDORFER, PH., AND SELBERHERR, S. Monte-Carlo - Poisson Coupling Using Transport Coefficients. In Proc: 21st European Solid State Device Research Conference (Montreux, Sep. 1991), M. Illegems and M. Dutoit, Eds., Elsevier, pp. 53-56.

58
KOSINA, H., AND SELBERHERR, S. Analysis of Filter Techniques for Monte-Carlo Device Simulation. In Proc: Simulation of Semiconductor Devices and Processes (Zürich, Sep. 1991), D. A. W. Fichtner, Ed., pp. 251-256.

59
LAUX, S.E., FISCHETTI, M.V., AND FRANK, D.J. Monte Carlo Analysis of Semiconductor Devices: the DAMOCLES Program. IBM Journal of Research and Development 34, 4 (Juli 1990), 466-494.

60
LEI, X.L., BIRMAN, J.L., AND C.S.TING. Two-Dimensional Balance Equations in Nonlinear Electronic Transport and Application to GaAs-GaAlAs Heterojunctions. Journal of Applied Physics 58, 6 (Sep. 1985), 2270-2279.

61
LIN, H., GOLDSMAN, N., AND MAYERGOYZ, I.D. A Direct Solution to the Space-Dependent Boltzmann Tranport Equation in Silicon. In Proc: Simulation of Semiconductor Devices and Processes (Zürich, Sep. 1991), D. A. W. Fichtner, Ed., pp. 195-205.

62
LUGLI, P., AND FERRY, D.K. Degeneracy in the Ensemble Monte Carlo Method for High-Field Transport in Semiconductors. IEEE Transactions on Electron Devices ED-32, 11 (Nov. 1985), 2431-2437.

63
LUGLI, P., AND FERRY, D.K. Effect of Electron-Electron and Electron-Plasmon Interactions on Hot Carrier Transport in Semiconductors. Physica B 129B (1985), 532-536.

64
LUNDSTROM, M. Fundamentals of Carrier Transport, vol. 10 of Modular Series on Solid State Devices. Addison-Wesley, 1990.

65
MADELUNG, O. Festkörpertheorie I. Springer Verlag, 1972.

66
MATZ, D. Hot-Carrier Distribution Function in Nonparabolic Energy Bands. J. Phys. Chem. Solids 28 (1967), 373-382.

67
MEINERZHAGEN, B., DIRKS, H.K., AND ENGL, W.L. Quasi-Simultaneous Solution Method: A New Highly Efficient Strategy for Numerical MOST Simulations. IEEE Transactions on Electron Devices ED-32, 10 (Okt. 1985), 2131-2138.

68
MEINERZHAGEN, B., AND ENGL, W.L. The Influence of the Thermal Equilibrium Approximation on the Accuracy of Classical Two-Dimensional Numerical Modeling of Silicon Submicrometer MOS Transistors. IEEE Transactions on Electron Devices 35, 5 (Mai 1988), 689-697.

69
MOGLESTUE, C. Monte Carlo Particle Modelling of Small Semiconductor Devices. Computer Methods in Applied Mechanics and Engineering 30 (1982), 173-208.

70
MOGLESTUE, C. A Self-Consistent Monte Carlo Particle Model to Analyze Semiconductor Microcomponents of Any Geometry. IEEE Transactions on Computer-Aided Design CAD-5, 2 (Apr. 1986), 326-354.

71
NGUYEN, P.T., NAVON, D.H., AND TANG, T.W. Boundary Conditions in Regional Monte Carlo Device Analysis. IEEE Transactions on Electron Devices ED-32, 4 (Apr. 1985), 783-787.

72
THE NUMERICAL ALGORITHMS GROUP. The NAG Fortran Library Manual- Mark 12, März 1987.

73
OLDIGES, P., AND TAKEUCHI, H. Two Temperature Energy Transport Model Incorporating Non-Parabolic Band Structure. In Proc: 51st Autumn Meeting (Sep. 1990), The Japan Society of Applied Physics, p. 654.

74
PARK, J.Y., TANG, T.W., AND NAVON, D.H. Monte Carlo Surface Scattering Simulation in MOSFET Structures. IEEE Transactions on Electron Devices ED-30, 9 (Sep. 1983), 1110-1116.

75
PARK, Y.J., TANG, T.W., AND NAVON, D.H. On the Monte Carlo Simulation of Bipolar Device. In Proc: International Electron Devices Meeting (Dez. 1982), pp. 688-691.

76
PARK, Y.P., NAVON, D.H., AND TANG, T.W. Monte Carlo Simulation of Bipolar Transistors. IEEE Transactions on Electron Devices ED-31, 12 (Dez. 1984), 1724-1730.

77
PEIFER, H.J., THOMA, R., EMUNDS, A., AND ENGL, W.L. Hot Carriers in a LDD-MOSFET Investigated with a Monte Carlo Simulator. In Proc: VLSI Process/Device Modeling Workshop (Osaka, Mai 1989), pp. 19-21.

78
PHILLIPS, A., AND PRICE, P.J. Monte Carlo Calculations on Hot Electron Tails. Applied Physics Letters 30, 10 (Mai 1977), 528-530.

79
PICHLER, P. Numerische Simulation kritischer Prozeßschritte in der Halbleitertechnik. PhD thesis, Technische Universität Wien, Sep. 1985.

80
PICHLER, P., JüNGLING, W., SELBERHERR, S., GUERRERO, E., AND PöTZL, H.W. Simulation of Critical IC-Fabrication Steps. IEEE Transactions on Electron Devices ED-32, 10 (1985), 1940-1953.

81
PRYCE, J. D. A New Measure of Relative Error for Vectors. SIAM J. Numer. Anal. 21, 1 (Feb. 1984), 202-215.

82
REES, H.D. Calculation of Distribution Functions by Exploiting the Stability of the Steady State. J. Phys. Chem. Solids 30 (1969), 643-655.

83
REGGIANI, L., Ed. Hot-Electron Transport in Semiconductors, vol. 58 of Topics in Applied Physics. Springer Verlag, 1985.

84
RICCÒ, B., SANGIORGI, E., VENTURI, F., AND LUGLI, P. Monte Carlo Modeling of Hot Electron Gate Current in MOSFETs. In Proc: International Electron Devices Meeting (Dez. 1986), pp. 559-562.

85
RIDLEY, B.K. Reconciliation of the Conwell-Weisskopf and Brooks-Herring Formulae for Charged-Impurity Scattering in Semiconductors: Third-Body Interference. Journal of Physics C: Solid State Physics 10 (1977), 1589-1593.

86
RIEGER, M., AND VOGL, P. New Lattice Gas Method for Semiconductor Transport Simulation. Solid-State Electronics 32, 12 (1989), 1399-1403.

87
RUDAN, M., AND ODEH, F. Multi-Dimensional Discretization Scheme for the Hydrodynamic Model of Semiconductor Devices. COMPEL 5, 3 (1986), 149-183.

88
RUDAN, M., ODEH, F., AND WHITE, J. Numerical Solution of the Hydrodynamic Model for a One-Dimensional Semiconductor Device. COMPEL 6, 3 (1987), 151-170.

89
SAI-HALASZ, G.A., AND HARRISON, H.B. Device-Grade Ultra-Shallow Junction Fabricated with Antimony. IEEE Electron Device Letters EDL-7, 9 (Sep. 1986), 534-536.

90
SAI-HALASZ, G.A., WORDEMAN, M.R., KERN, K.P., GANIN, E., RISHTON, S., ZICHERMAN, D.S., SCHMID, H., POLCARI, M.R., NG, H.Y., RESTLE, P.J., CHANG, T.H., AND DENNARD, R.H. Design and Experimental Technology for Gate Length Low-Temperature Operation FET's. IEEE Electron Device Letters EDL-8, 10 (Okt. 1987), 463-466.

91
SANGIORGI, E., RICCO, B., AND VENTURI, F. : An Efficient Monte Carlo Simulator for MOS Devices. IEEE Transactions on Computer-Aided Design 7, 2 (Feb. 1988), 259-271.

92
SANGIORGI, E., AND PINTO, M.R. A Semi-Empirical Model of Surface Scattering for Monte Carlo Simulation of Silicon n-MOSFET's. IEEE Transactions on Electron Devices 39, 2 (Feb. 1992), 356-361.

93
SELBERHERR, S. Analysis and Simulation of Semiconductor Devices. Springer Verlag, 1984.

94
SELBERHERR, S. MOS Device Modeling at 77K. IEEE Transactions on Electron Devices 36, 8 (Aug. 1989), 1464-1474.

95
SELBERHERR, S., HÄNSCH, W., SEAVEY, M., AND SLOTBOOM, J. The Evolution of the MINIMOS Mobility Model. Solid-State Electronics 33, 11 (1990), 1425-1436.

96
STETTLER, M.A., DAS, A., AND LUNDSTROM, M.S. Self-Consistent Solution of the Boltzmann Transport Equation Using the Scattering Matrix Approach. In Proc: Simulation of Semiconductor Devices and Processes (Zürich, Sep. 1991), D. A. W. Fichtner, Ed., pp. 215-221.

97
TANG, J.Y., AND HESS, K. Theory of Hot Electron Emission from Silicon into Silicon Dioxide. Journal of Applied Physics 54, 9 (Sep. 1983), 5145-5151.

98
THOMA, R., EMUNDS, A., MEINERZHAGEN, B., PEIFER, H., AND ENGL, W.L. A Generalized Hydrodynamic Model Capable of Incorporating Monte Carlo Results. In Proc: International Electron Devices Meeting (Washington, D.C., 1989), pp. 139-142.

99
THOMA, R., EMUNDS, A., MEINERZHAGEN, B., PEIFER, H.J., AND ENGL, W.L. Hydrodynamic Equations for Semiconductors with Nonparabolic Band Structure. IEEE Transactions on Electron Devices 38, 6 (Juni 1991), 1343-1353.

100
THRONGNUMCHAI, K., ASADA, K., AND SUGANO, T. Modeling of - MOSFET on SOI Structure Using Monte Carlo Simulation Technique. IEEE Transactions on Electron Devices ED-33, 7 (Juli 1986), 1005-1011.

101
THURNER, M. Dreidimensionale Modellierung von MOS Transistoren. PhD thesis, Technische Universität Wien, Okt. 1988.

102
TOMIZAWA, M., YOKOYAMA, K., AND YOSHII, A. Nonstationary Carrier Dynamics in Quarter-Micron Si MOSFET's. IEEE Transactions on Electron Devices 7, 2 (Feb. 1988), 254-258.

103
VAN DE ROER, T.G., AND WIDDERSHOVEN, F.P. Ionized Impurity Scattering in Monte Carlo Calculations. Journal of Applied Physics 59, 3 (Feb. 1986), 813-815.

104
VENTURI, F., SMITH, R.K., SANGIORGI, E., PINTO, M.R., AND RICCÒ, B. A New Coupling Scheme for a Self-Consistent Poisson and Monte Carlo Device Simulator. In Proc: Simulation of Semiconductor Devices and Processes (Bologna, Sep. 1988), G. Baccarani and M. Rudan, Eds., pp. 383-386.

105
VENTURI, F., SMITH, R.K., SANGIORGI, E.C., PINTO, M.R., AND RICCO, B. A General Purpose Device Simulator Coupling Poisson and Monte Carlo Transport with Applications to Deep Submicron MOSFET's. IEEE Transactions on Computer-Aided Design 8, 4 (Apr. 1989), 360-369.

106
VENTURI, F., SANGIORGI, E., BRUNETTI, R., QUADE, W., JACOBONI, C., AND RICCÒ, B. Monte Carlo Simulations of High Energy Electrons and Holes in Si-n-MOSFET's. IEEE Transactions on Computer-Aided Design 10, 10 (Okt. 1991), 1276-1286.

107
VOGELSANG, TH., AND HÄNSCH, W. A Novel Approach to Include Band-Structure Effects in a Monte Carlo Simulation of Electron Transport in Silicon. Journal of Applied Physics 70, 3 (Aug. 1991), 1493-1499.

108
WIDIGER, D., HESS, K., AND COLEMAN, J.J. Two-Dimensional Numerical Analysis of the High Electron Mobility Transistor. IEEE Electron Device Letters EDL-5, 7 (Juli 1984), 266-269.

109
WILLIAMS, C.K., GLISSON, T.H., HAUSER, J.R., LITTLEJOHN, M.A., AND ABUSAID, M.F. Two-Dimensional Monte Carlo Simulation of a Submicron GaAs MESFET with a Nonuniformly Doped Channel. Solid-State Electronics 28, 11 (1985), 1105-1109.

110
WILLIAMS, R.A., DEVA, D.N., AND PATTANAYAK, N. ADAM: A Two-Dimensional, Two-Carrier MOSFET Simulator Based on Generalized Stream Functions. IEEE Transactions on Computer-Aided Design 7, 2 (Feb. 1988), 243-250.

111
YOKOYAMA, K., AND HESS, K. Monte Carlo Study of Electronic Transport in Single-Well Heterostructures. Physical Review B 33, 8 (Apr. 1986), 5595-5606.

112
YOKOYAMA, K., AND SAKAKI, H. Importance of Low-Field Drift Velocity Characteristics for HEMT Modeling. IEEE Electron Device Letters EDL-8, 2 (Feb. 1987), 73-75.

113
YOSHII, A., TOMIZAWA, M., AND YOKOYAMA, K. Accurate Modeling for Submicrometer-Gate Si and GaAs MESFET's Using Two-Dimensional Particle Simulation. IEEE Transactions on Electron Devices ED-30, 10 (Okt. 1983), 1376-1380.



Martin Stiftinger
Wed Oct 12 11:59:33 MET 1994