next up previous contents
Next: B.2.2 For the Vector Up: B.2 Neumann Boundary for Previous: B.2 Neumann Boundary for   Contents


B.2.1 For the Scalar Function

The Neumann boundary integral for $ \psi$ from (5.75) is modified to read

\begin{displaymath}\begin{split}\int_{\mathcal{C}_{N2}}\lambda_i\vec{n}\cdot\lef...
...\mathrm{d}s =  & = \left[D\right]\left\{c\right\} \end{split}\end{displaymath} (B.22)

$\displaystyle D_{ij}^e = \mu\left(\int_{\mathcal{C}^e_k}\lambda_i^e \mathrm{d}...
...t)\vec{n}_k\cdot\vec{\nabla}\lambda_j^e,   i\in[1;3], j\in[1;3], k\in[1;3].$ (B.23)

For the computation of $ \left[D\right]$ the following expressions are obtained:

$\displaystyle \left(l_{12}\vec{n}_3\right)\cdot\vec{\nabla}\lambda_1^e = -\left...
...vec{r}_{23}\times\vec{e}_z}{2F_e} = -\frac{\vec{r}_{12}\cdot\vec{r}_{23}}{2F_e}$ (B.24)

and analogously

$\displaystyle \left(l_{12}\vec{n}_3\right)\cdot\vec{\nabla}\lambda_2^e = -\frac...
...ight)\cdot\vec{\nabla}\lambda_3^e = -\frac{\vec{r}_{12}\cdot\vec{r}_{12}}{2F_e}$ (B.25)

\begin{displaymath}\begin{split}& \left(l_{23}\vec{n}_1\right)\cdot\vec{\nabla}\...
...a_3^e = -\frac{\vec{r}_{23}\cdot\vec{r}_{12}}{2F_e} \end{split}\end{displaymath} (B.26)

\begin{displaymath}\begin{split}& \left(l_{31}\vec{n}_2\right)\cdot\vec{\nabla}\...
..._3^e = -\frac{\vec{r}_{31}\cdot\vec{r}_{12}}{2F_e}. \end{split}\end{displaymath} (B.27)

Along Edge $ 12$ :

$\displaystyle D_{1j}^e = \mu\left( \int_{\mathcal{C}^e_1}\lambda_1^e \mathrm{...
...bda_j^e = \frac{\mu}{2}\left(l_{12}\vec{n}_3\right)\cdot\vec{\nabla}\lambda_j^e$ (B.28)

$\displaystyle D_{2j}^e = \mu\left( \int_{\mathcal{C}^e_1}\lambda_2^e \mathrm{...
...bda_j^e = \frac{\mu}{2}\left(l_{12}\vec{n}_3\right)\cdot\vec{\nabla}\lambda_j^e$ (B.29)

$\displaystyle D_{3j}^e = \mu\left( \int_{\mathcal{C}^e_1}\lambda_3^e \mathrm{...
...3\cdot\vec{\nabla}\lambda_j^e = 0,    \lambda_3^e = 0 \mathrm{on Edge} 12$ (B.30)

$\displaystyle \left[D\right]^e = -\frac{\mu}{4F_e} \left[ \begin{array}{ccc} \v...
...t\vec{r}_{31} & \vec{r}_{12}\cdot\vec{r}_{12}  0 & 0 & 0 \end{array} \right].$ (B.31)

Analogously for the remaining edges the following is calculated.

Along Edge $ 23$ :

$\displaystyle \left[D\right]^e = -\frac{\mu}{4F_e} \left[ \begin{array}{ccc} 0 ...
...c{r}_{23}\cdot\vec{r}_{31} & \vec{r}_{23}\cdot\vec{r}_{12} \end{array} \right].$ (B.32)

Along Edge $ 31$ :

$\displaystyle \left[D\right]^e = -\frac{\mu}{4F_e} \left[ \begin{array}{ccc} \v...
...c{r}_{31}\cdot\vec{r}_{31} & \vec{r}_{31}\cdot\vec{r}_{12} \end{array} \right].$ (B.33)


next up previous contents
Next: B.2.2 For the Vector Up: B.2 Neumann Boundary for Previous: B.2 Neumann Boundary for   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements