next up previous contents
Next: C. Three-Dimensional Neumann Boundary Up: B.2 Neumann Boundary for Previous: B.2.1 For the Scalar   Contents


B.2.2 For the Vector Function

The Neumann boundary integral for $ \vec{H}_1$ from (5.75) is written in the form

\begin{displaymath}\begin{split}\int_{\mathcal{C}_{N2}}\lambda_i\vec{n}\cdot\lef...
...\mathrm{d}s =  & = \left[D\right]\left\{c\right\} \end{split}\end{displaymath} (B.34)

$\displaystyle D_{ij}^e = \mu\int_{\mathcal{C}^e_k}\lambda_i^e\vec{n}_k\cdot\vec{N}_j^e \mathrm{d}s,   i\in[1;3], j\in[1;3], k\in[1;3].$ (B.35)

Along Edge $ 12$ :

\begin{displaymath}\begin{split}D_{11}^e & = \mu\int_{\mathcal{C}^e_1}\lambda_1^...
...\vec{r}_{31} - \vec{r}_{12}\cdot\vec{r}_{23}\right) \end{split}\end{displaymath} (B.36)

\begin{displaymath}\begin{split}D_{12}^e & = \mu\int_{\mathcal{C}^e_1}\lambda_1^...
...{\mu{}l_{23}}{12F_e} \vec{r}_{12}\cdot\vec{r}_{12} \end{split}\end{displaymath} (B.37)

\begin{displaymath}\begin{split}D_{13}^e & = \mu\int_{\mathcal{C}^e_1}\lambda_1^...
...c{\mu{}l_{31}}{6F_e} \vec{r}_{12}\cdot\vec{r}_{12} \end{split}\end{displaymath} (B.38)

$\displaystyle D_{21}^e= -\frac{\mu{}l_{12}}{12F_e}\left(\vec{r}_{12}\cdot\vec{r}_{31} - 2 \vec{r}_{12}\cdot\vec{r}_{23}\right)$ (B.39)

$\displaystyle D_{22}^e= -\frac{\mu{}l_{23}}{6F_e} \vec{r}_{12}\cdot\vec{r}_{12}$ (B.40)

$\displaystyle D_{23}^e= \frac{\mu{}l_{31}}{12F_e} \vec{r}_{12}\cdot\vec{r}_{12}$ (B.41)

$\displaystyle D_{3j}^e= \mu\int_{\mathcal{C}^e_1}\lambda_3^e \vec{n}_3\cdot\vec{N}_j^e \mathrm{d}s = 0, \lambda_3^e = 0 \mathrm{on Edge} 12.$ (B.42)

Along Edge $ 23$ :

$\displaystyle D_{1j}^e= \mu\int_{\mathcal{C}^e_2}\lambda_1^e \vec{n}_1\cdot\vec{N}_j^e \mathrm{d}s = 0, \lambda_1^e = 0 \mathrm{on Edge} 23$ (B.43)

\begin{displaymath}\begin{split}D_{21}^e & = \mu\int_{\mathcal{C}^e_2}\lambda_2^...
...c{\mu{}l_{12}}{6F_e} \vec{r}_{23}\cdot\vec{r}_{23} \end{split}\end{displaymath} (B.44)

\begin{displaymath}\begin{split}D_{22}^e & = \mu\int_{\mathcal{C}^e_2}\lambda_2^...
...\vec{r}_{12} - \vec{r}_{23}\cdot\vec{r}_{31}\right) \end{split}\end{displaymath} (B.45)

\begin{displaymath}\begin{split}D_{23}^e & = \mu\int_{\mathcal{C}^e_2}\lambda_2^...
...{\mu{}l_{31}}{12F_e} \vec{r}_{23}\cdot\vec{r}_{23} \end{split}\end{displaymath} (B.46)

$\displaystyle D_{31}^e = \frac{\mu{}l_{12}}{12F_e} \vec{r}_{23}\cdot\vec{r}_{23}$ (B.47)

$\displaystyle D_{32}^e = -\frac{\mu{}l_{23}}{12F_e}\left(\vec{r}_{23}\cdot\vec{r}_{12} - 2 \vec{r}_{23}\cdot\vec{r}_{31}\right)$ (B.48)

$\displaystyle D_{33}^e = -\frac{\mu{}l_{31}}{6F_e} \vec{r}_{23}\cdot\vec{r}_{23}.$ (B.49)

Along Edge 31:

\begin{displaymath}\begin{split}D_{11}^e & = \mu\int_{\mathcal{C}^e_3}\lambda_1^...
...c{\mu{}l_{12}}{6F_e} \vec{r}_{31}\cdot\vec{r}_{31} \end{split}\end{displaymath} (B.50)

\begin{displaymath}\begin{split}D_{12}^e & = \mu\int_{\mathcal{C}^e_3}\lambda_1^...
...{\mu{}l_{23}}{12F_e} \vec{r}_{31}\cdot\vec{r}_{31} \end{split}\end{displaymath} (B.51)

\begin{displaymath}\begin{split}D_{13}^e & = \mu\int_{\mathcal{C}^e_3}\lambda_1^...
...c{r}_{23} - 2 \vec{r}_{31}\cdot\vec{r}_{12}\right) \end{split}\end{displaymath} (B.52)

$\displaystyle D_{2j}^e= \mu\int_{\mathcal{C}^e_3}\lambda_2^e \vec{n}_2\cdot\vec{N}_j^e \mathrm{d}s = 0, \lambda_2^e = 0 \mathrm{on Edge} 31$ (B.53)

$\displaystyle D_{31}^e = -\frac{\mu{}l_{12}}{12F_e} \vec{r}_{31}\cdot\vec{r}_{31}$ (B.54)

$\displaystyle D_{32}^e = \frac{\mu{}l_{23}}{6F_e} \vec{r}_{31}\cdot\vec{r}_{31}$ (B.55)

$\displaystyle D_{33}^e = -\frac{\mu{}l_{31}}{12F_e}\left(2 \vec{r}_{31}\cdot\vec{r}_{23} - \vec{r}_{31}\cdot\vec{r}_{12}\right).$ (B.56)


next up previous contents
Next: C. Three-Dimensional Neumann Boundary Up: B.2 Neumann Boundary for Previous: B.2.1 For the Scalar   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements