next up previous
Next: 3.5 Quantum Mechanical Aspects Up: 3. The Physical Model Previous: 3.3.5 Boundaries

3.4 Electrothermal Simulations

To model the thermal conductivity as a function of lattice temperature the following relation was used:

    $\displaystyle \kappa({\it T}_\mathrm{L}) = \kappa_{300} \cdot \bigg( \frac{{\it T}_\mathrm{L}}{300 K}\bigg)^{\alpha}$ (3.123)

The values for the basic semiconductors are given in Table 3.34.

Table 3.34: Thermal conductivity coefficients in basic semiconductors and insulators.
Material $ \kappa_{300}$ $ \alpha$ Reported Range References
  [W m$ ^{-1}$ K$ ^{-1}$]   [W m$ ^{-1}$ K$ ^{-1}$]  
GaAs 46 -1.25 37,44 [85,194]
AlAs 80 -1.37 91 [4]
InAs 27.3 -1.1 27,28.9 [85]
InP 68 -1.4 - [85]
GaN 125 -0.43 130,150 [259,260]
AlN 285 -1.577 200 [259,267]
InN 80 $ \pm$ 20 (estimate) - - [290]
Si 148 -1.33,-1.65 150,154 [194,251]
SiO$ _2$ 1.38 +0.33 1.4 [63,194]
Si$ _3$N$ _4$ 18.5 (amorph.) +0.33 16 [63,194]
  27 (crystal)   - [173]
BeO 248 -1.27 300 [169,173]
Al$ _2$O$ _3$ (sapphire) 23.1 $ \parallel$, 25.2 $ \perp$ c -1 33 [81,173]
Al$ _2$O$ _3$ (alumina) 28 -1 15-40 [173]
AlN /ceramic 145.9 -1.84 180 [169,266]
Diamond 2500 (natural Type II) -1.85 500-3200 [299]
SiC 330 (490) -1.61 320-490 [81,114,266]


Comparing Si and the GaAs III-V materials, the latter have a reduced thermal conductivity by at least a factor of 2. This results in several investigations performed, e.g. [209], where similar values for the GaAs based III-V semiconductors were used for power HBTs. For the nitride materials available so far, Fig. 3.22 shows a comparison of model and measurements. GaN has a similar thermal conductivity as Si. The available value for InN is an estimate only, although repeatedly cited. Thus for the temperature dependence no measurement data are available. Unfortunately, many references published for the temperature dependence in GaN refer back to the measurements of [260], which may be outdated. For AlN and SiC the modeling is shown in Fig. 3.22. This shortage of caliometric measurements is especially relevant, since the AlGaN/GaN HEMTs are thermally limited. For SiC there is a broad experimental base for the thermal conductivity. Natural diamond represents the best heat conducting material and is thus supplied for reference.

Figure 3.22: Modeling of the temperature dependence of the thermal conductivity of GaN, AlN, and SiC [260,266,267].

\includegraphics[width=10 cm]{D:/Userquay/Promotion/HtmlDiss/fig-16c.eps}

For ternary semiconductors the values for $ \alpha$ and $ \kappa$ are composed as given in (3.127) and (3.128).

    $\displaystyle \kappa_{300}^{AB} =\frac{1}{\bigg(\displaystyle \frac{1-x}{\kappa_{300}^A} +\frac{x}{\kappa_{300}^B}+\frac{(1-x)\cdot x}{C_\kappa}\bigg)}$ (3.124)


    $\displaystyle \alpha^{AB} = (1-x) \cdot \alpha^A + x \cdot \alpha^B$ (3.125)

The bowing parameters are summarized in Table 3.35. For InAlAs, AlGaN, or InGaN there are, to the authors knowledge, no measurements on the thermal properties available. The heat capacities of bulk materials are modeled as follows:
    $\displaystyle c({\it T}_\mathrm{L})= c_{300}+ c_1 \cdot \frac{\bigg( \displayst...
...laystyle \frac{{\it T}_\mathrm{L}}{300 K} \bigg)^{\beta} + \frac{c_1}{c_{300}}}$ (3.126)

The parameter values are given in Table 3.36. For ternary semiconductors the parameters are composed as follows:
    $\displaystyle c_{AB}(x) = (1-x)\cdot c_L^A + x\cdot c_L^B.$ (3.127)


Table 3.35: Bowing parameters for the thermal conductivity of ternary bulk III-V semiconductors.
Material $ C_{\kappa}$ Material Composition Reported $ c_{300}$ References
  [W m$ ^{-1}$ K$ ^{-1}$] $ x$    
Al$ _{x}$Ga$ _{1-x}$As 3.3 0.1 21 [4]
    0.23 15 [4]
    0.43 11 [4]
InGaAs 1.4 0.53 6.3 [250]
InAlAs 0 - - -
AlInAlAs 0 - - -
AlGaN 0 - - -



Table 3.36: Heat capacity parameters for bulk III-V semiconductors and insulators.
Material c$ _{300}$ c$ _1$ $ \beta$ Reported c$ _{300}$ References
  [J/K kg] [J/K kg]   [J/K kg]  
GaAs 322 50 1.6 350 [194,284]
AlAs 441 50 1.2 490 [294]
InAs 394 50 1.95 394 [294]
InP 410 50 2.05 - [294]
GaP 519 50 2.6 - [294]
GaN 491 70 1 - [9]
AlN (polycrys.) 748 482 2.29 - [180]
InN 325 57 1 - [291]
Si 711 255 1.85 700 [194,284]
Al$ _2$O$ _3$(sapphire) 796 - - - [173]
SiO$ _2$ 709 696 1.5 782, 1000 [194,251]
Si$ _3$N$ _4$ 787 820 - 800 [251]



next up previous
Next: 3.5 Quantum Mechanical Aspects Up: 3. The Physical Model Previous: 3.3.5 Boundaries
Quay
2001-12-21