- 1
-
Arnaud, L., Berger, T., and Reimbold, G. (2003). Evidence of Grain-Boundary Versus Interface Diffusion in Electromigration Experiments in Copper Damascene Interconnects. J. Appl. Phys., 93(1):192-204.
- 2
-
Arnold, B. (2009). Shrinking Possibilities. IEEE Spectr., 46(4):26-28, 50-56.
- 3
-
Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E. (1994). Electromigration Failure by Shape Change of Voids in Bamboo Lines. J. Appl. Phys., 76(3):1563-1571.
- 4
-
Averbuch, A., Israeli, M., and Ravve, I. (2003). Electromigration of Intergranular Voids in Metal Films for Microelectronic Interconnects. J. Comput. Phys., 186(2):481-502.
- 5
-
Baker, R. (2005). CMOS Circuit Design Layout and Simulation. Wiley-IEEE, 2nd
edition.
- 6
-
Baklanov, M. R., Adelmann, C., Zhao, L., and De Gendt, S. (2015). Advanced Interconnects: Materials, Processing, and Reliability. ECS J. Solid State Sci. Technol., 4(1):Y1-Y4.
- 7
-
Balluf , R. W. and Mehl, R. F. (1982). Grain Boundary Diffusion Mechanisms in Metals. Metall. Trans. A, 13(12):2069-2095.
- 8
-
Bardeen, J. and Brattain, W. H. (1948). The Transistor, A Semi-Conductor Triode. Phys. Rev., 74(2):230-231.
- 9
-
Beyne, E. (2006). 3D System Integration Technologies. In Proc. VLSI-TSA, 1-9.
- 10
-
Bhate, D. N., Bower, A. F., and Kumar, A. (2002). A Phase Field Model for Failure in Interconnect Lines due to Coupled Diffusion Mechanisms. J. Mech. Phys. Solids, 50(10):2057-2083.
- 11
-
Bhate, D. N., Kumar, A., and Bower, A. F. (2000). Diffuse Interface Model for Electromigration and Stress Voiding. J. Appl. Phys., 87(4):1712-1721.
- 12
-
Black, J. R. (1967). Mass Transport of Aluminum by Momentum Exchange With Conducting Electrons. In Proc. Reliab. Phys. Symp., 148-159.
- 13
-
Black, J. R. (1969). Electromigration - A Brief Survey and Some Recent Results. IEEE Trans. Electron Dev., 16(4):338-347.
- 14
-
Black, J. R. (1969). Electromigration Failure Modes in Aluminum Metallization for
Semiconductor Devices. Proc. IEEE, 57(9):1587-1594.
- 15
-
Blair, J. C., Ghate, P. B., and Haywood, C. T. (1971). Concerning Electromigration in
Thin Films. Proc. IEEE, 59(6):1023-1024.
- 16
-
Blech, I. A. (1976). Electromigration in Thin Aluminum Films on Titanium Nitride. J. Appl. Phys., 47(4):1203-1208.
- 17
-
Blech, I. A. and Sello, H. (1966). The Failure of Thin Alluminum Current-Carrying
Strips on Oxidized Silicon. In Proc. Symposium on PoF in Electronics, 496-505.
- 18
-
Bosvieux, C. and Friedel, J. (1962). Sur l'Electrolyse des Alliages Metalliques. J. Phys. Chem. Solids, 23(1):123-136.
- 19
-
Bower, A. F. (2010). Applied Mechanics of Solids. CRC Press.
- 20
-
Cacho, F. and Federspiel, X. (2011). Modeling of Electromigration Phenomena. In Kim, C.-U., editor, Electromigration in Thin Films and Electronic Devices, Woodhead Publishing Series in Electronic and Optical Materials, 3-44. Woodhead Publishing.
- 21
-
Cahn, J. W. (1965). Phase Separation by Spinodal Decomposition in Isotropic Systems. J. Chem. Phys., 42(1):93-99.
- 22
-
Cahn, J. W. and Hilliard, J. E. (1958). Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys., 28(2):258-267.
- 23
-
Cannon, J. R. (1984). The One-Dimensional Heat Equation. Encyclopedia of Mathematics and its Applications. Longman Higher Education.
- 24
-
Cassidy, C., Kraft, J., Carniello, S., Roger, F., Ceric, H., Singulani, A. P., Langer, E., and Schrank, F. (2012). Through Silicon Via Reliability. IEEE Trans. Device Mater. Rel., 12(2):285-295.
- 25
-
Ceric, H., de Orio, R. L., Cervenka, J., and Selberherr, S. (2009). A Comprehensive TCAD Approach for Assessing Electromigration Reliability of Modern Interconnects. IEEE Trans. Device Mater. Rel., 9(1):9-19.
- 26
-
Ceric, H., de Orio, R. L., Singulani, A. P., and Selberherr, S. (2014). 3D Technology Interconnect Reliability TCAD. In Proc. SMTA Pan Pac, 1-8.
- 27
-
Ceric, H., Heinzl, R., Hollauer, C., Grasser, T., and Selberherr,S.(2006).Microstructure and Stress Aspects of Electromigration Modeling. AIP Conf. Proc., 817:262-268.
- 28
-
Ceric, H., Sabelka, R., Holzer, S., Wessner, W., Wagner, S., Grasser, T., and Selberherr, S. (2004). The Evolution of the Resistance and Current Density During Electromigration, 331-334. Springer Vienna, Vienna.
- 29
-
Ceric, H. and Selberherr, S. (2011). Electromigration in Submicron Interconnect Features of Integrated Circuits. Mater. Sci. Eng. R-Rep., 71(5):53-86.
- 30
-
Ceric, H. and Selberherr, S. (2014). Electromigration Reliability of Solder Bumps. In Proc. IPFA, 336-339.
- 31
-
Ceric, H., Singulani, A. P., de Orio, R. L., and Selberherr, S. (2013). Impact of Intermetallic Compound on Solder Bump Electromigration Reliability. In Proc. SISPAD, 73-76.
- 32
-
Chen, C., Hsiao, H.-Y., Chang, Y.-W., Ouyang, F., and Tu, K. (2012). Thermomigration in Solder Joints. Mat. Sci. Eng. R, 73(9-10):85-100.
- 33
-
Chen, H. Y. and Chen, C. (2008). Kinetic Study of Eutectic Sn-3.5Ag and Electroplated Ni Metallization in Flip-Chip Solder Joints. In Proc. EMAP, 262-267.
- 34
-
Choi, W. J., Yeh, E. C. C., and Tu, K. N. (2003). Mean-Time-To-Failure Study of Flip Chip Solder Joints on Cu/Ni(V)/Al Thin-Film Under-Bump-Metallization. J. Appl. Phys., 94(2):5665-5671.
- 35
-
Choi, Z.-S., Moenig, R., and Thompson, C. (2008). Effects of Microstructure on the Formation, Shape, and Motion of Voids During Electromigration in Passivated Copper Interconnects. J. Mater. Res., 23(02):383-391.
- 36
-
Clemens, B. M., Nix, W. D., and Gleixner, R. J. (1997). Void Nucleation on a Contaminated Patch. J. Mater. Res., 12(08):2038-2042.
- 37
-
Clement, J. J. and Lloyd, J. R. (1992). Numerical Investigations of the Electromigration Boundary Value Problem. J. Appl. Phys., 71(4):1729-1731.
- 38
-
COMSOL (2012). COMSOL Multiphysics® v. 4.3., COMSOL AB, Stockholm, Sweden. http://www.comsol.com.
- 39
-
Croes, K., Li, Y., Lofrano, M., Wilson, C. J., and Tokei, Z. (2013). Intrinsic Study of Current Crowding and Current Density Gradient Effects on Electromigration in BEOL Copper Interconnects. In Proc. IRPS, 2C.3.1-2C.3.4.
- 40
-
de Orio, R. L. (2010). Electromigration Modeling and Simulation. Dissertation, Technischen Universitaet Wien, Fakultaet fuer Elektrotechnik und Informationstechnik.
- 41
-
de Orio, R. L., Carniello, S., Ceric, H., and Selberherr, S. (2008). Analysis of Electromigration in Dual-Damascene Interconnect Structures. ECS Trans., 14(1):337-348.
- 42
-
de Orio, R. L., Ceric, H., and Selberherr, S. (2011). A Compact Model for Early Electromigration Lifetime Estimation. In Proc. SISPAD, 23-26.
- 43
-
de Orio, R. L., Ceric, H., and Selberherr, S. (2012). Electromigration Failure in a Copper Dual-Damascene Structure With a Through Silicon Via. Microelectron. Reliab., 52(9–10):1981-1986.
- 44
-
de Orio, R. L., Ceric, H., and Selberherr, S. (2013). Influence of Temperature on the Standard Deviation of Electromigration Lifetimes. In Proc. SISPAD, 232-235.
- 45
-
de Orio, R. L., Gousseau, S., Moreau, S., Ceric, H., Selberherr, S., Farcy, A., Bay, F., Inal, K., and Montmitonnet, P. (2014). On the Material Depletion Rate due to Electromigration in a Copper TSV Structure. In Proc. IIRW, 111-114.
- 46
-
Dekker, J. P. and Lodder, A. (1998). Calculated Electromigration Wind Force in Face-Centered-Cubic and Body-Centered-Cubic Metals. J. Appl. Phys., 84(4):1958-1962.
- 47
-
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R. (1974). Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions. IEEE J. Solid-State Circuits, 9(5):256-268.
- 48
-
d'Heurle, F. M. and Rosenberg, R. (1973). Electromigration in Thin Films. Physics of Thin Films 7. Academic Press Inc.,U.S.
- 49
-
Dreyer, M. L., Fu, K. Y., and Varker, C. J. (1993). The Effects of Temperature and Microstructure on the Components of Electromigration Mass Transport. In Proc. IRPS, 304-310.
- 50
-
Dubrovskii, V. (2014). Fundamentals of Nucleation Theory, 1-73. Springer Berlin Heidelberg, Berlin, Heidelberg.
- 51
-
Dwyer, V. M. (2010). An Investigation of Electromigration Induced Void Nucleation Time Statistics in Short Copper Interconnects. J. Appl. Phys., 107(10):103718-1-103718-12.
- 52
-
EIA/JEDEC (1998). Standard No. 63, Standard Method for Calculating the Electromigration Model Parameters for Current Density and Temperature. JEDEC Solid State Technology Association.
- 53
-
Emmerich, H. (2003). The Diffuse Interface Approach in Materials Science : Thermo- dynamic Concepts and Applications of Phase-Field Models. Lecture Notes in Physics, New Series, Monographs, M73. Springer.
- 54
-
Faggin, F. (1992). The Birth of the Microprocessor. BYTE, 17(3):145-150.
- 55
-
Fiks, V. B. (1959). Interaction of Conduction Electrons With Single Dislocations in
Metals. Phys. Solid State, 1:14.
- 56
-
Filippi, R. G., Wang, P.-C., Brendler, A., Chanda, K., and Lloyd, J. R. (2010). Implications of a Threshold Failure Time and Void Nucleation on Electromigration of Copper Interconnects. J. Appl. Phys., 107(10):103709-1-103709-7.
- 57
-
Filippi, R. G., Wang, P. C., Brendler, A., McLaughlin, P. S., Poulin, J., Redder, B., Lloyd, J. R., and Demarest, J. J. (2009). The Effect of a Threshold Failure Time and Bimodal Behavior on the Electromigration Lifetime of Copper Interconnects. In Proc. IRPS, 444-451.
- 58
-
Fisher, J. C. (1951). Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. J. Appl. Phys., 22(1):74-77.
- 59
-
Flinn, P. A. (1995). Mechanical Stress in VLSI Interconnections: Origins, Effects, Measurement, and Modeling. MRS Bulletin, 20(11):70-73.
- 60
-
Frank, T., Chappaz, C., Leduc, P., Arnaud, L., Lorut, F., Moreau, S., Thuaire, A., Farhane, R. E., and Anghel, L. (2011). Resistance Increase due to Electromigration Induced Depletion Under TSV. In Proc. IRPS, 3F.4.1-3F.4.6.
- 61
-
Frank, T., Moreau, S., Chappaz, C., Leduc, P., Arnaud, L., Thuaire, A., Chery, E., Lorut, F., Anghel, L., and Poupon, G. (2013). Reliability of TSV Interconnects: Electromigration, Thermal Cycling, and Impact on Above Metal Level Dielectric. Microelectron. Reliab., 53(1):17-29.
- 62
-
Fridline, D. R. and Bower, A. F. (1999). Influence of Anisotropic Surface Diffusivity on Electromigration Induced Void Migration and Evolution. J. Appl. Phys., 85(6):3168-3174.
- 63
-
Gleixner, R. J., Clemens, B. M., and Nix, W. D. (1997). Void Nucleation in Passivated Interconnect Lines: Effects of Site Geometries, Interfaces, and Interface Flaws. J. Mater. Res., 12(08):2081-2090.
- 64
-
Gleixner, R. J. and Nix, W. D. (1999). A Physically Based Model of Electromigration and Stress-Induced Void Formation in Microelectronic Interconnects. J. Appl. Phys., 86(4):1932-1944.
- 65
-
Glicksman, M. E. (2000). Diffusion in Solids: Field Theory, Solid-State Principles, and Applications. Wiley.
- 66
-
Goldstein, R., Sarychev, M., Shirabaikin, D., Vladimirov, A., and Zhitnikov, Y. (2001). Modeling Electromigration and the Void Nucleation in Thin-Film Interconnects of Integrated Circuits. Int. J. Fract., 109(1):91-121.
- 67
-
G.Q. Zhang, W.D. van Driel, X. F. (2006). Mechanics of Microelectronics. Solid Mechanics and Its Applications. Springer, 1st edition.
- 68
-
Gray, L., Maroudas, D., Enmark, M., and D'Azevedo, E. (1999). Approximate Green's Functions in Boundary Integral Analysis. Eng. Anal. Bound. Elem., 23(3):267-274.
- 69
-
Gray, L. J., Maroudas, D., and Enmark, M. N. (1998). Galerkin Boundary Integral Method for Evaluating Surface Derivatives. Comput. Mech., 22(2):187-193.
- 70
-
Griffiths, D. J. (1999). Introduction to Electrodynamics. Prentice Hall, 3rd edition.
- 71
-
Gungor, M. R. and Maroudas, D. (1998). Electromigration-Induced Failure of Metallic
Thin Films due to Transgranular Void Propagation. Appl. Phys. Lett., 72(26):3452-3454.
- 72
-
Gurtin, M. E. (1996). Generalized Ginzburg-Landau and Cahn-Hilliard Equations
Based on a Microforce Balance. Phys. D, 92(3-4):178-192.
- 73
-
Hartzell, A. L., da Silva, M. G., and Shea, H. R. (2011). MEMS Reliability. MEMS Reference Shelf. Springer US, 1st edition.
- 74
-
Hau-Riege, C. S., Hau-Riege, S. P., and Marathe, A. P. (2004). The Effect of Interlevel Dielectric on the Critical Tensile Stress to Void Nucleation for the Reliability of Cu Interconnects. J. Appl. Phys., 96(10):5792-5796.
- 75
-
Hauschildt, M., Gall, M., Thrasher, S., Justison, P., Hernandez, R., Kawasaki, H., and Ho, P. S. (2007). Statistical Analysis of Electromigration Lifetimes and Void Evolution. J. Appl. Phys., 101(4):043523-1-043523-9.
- 76
-
Herring, C. (1950). Diffusional Viscosity of a Polycrystalline Solid. J. Appl. Phys., 21(5):437-445.
- 77
-
Hirth, J. and Nix, W. (1985). Analysis of Cavity Nucleation in Solids Subjected to
External and Internal Stresses. Acta Metall., 33(3):359-368.
- 78
-
Ho, P. S. (1970). Motion of Inclusion Induced by a Direct Current and a Temperature
Gradient. J. Appl. Phys., 41(1):64-68.
- 79
-
Ho, P. S. and Kwok, T.(1989).Electromigration in Metals. Rep. Prog. Phys., 52(3):301-348.
- 80
-
Hong, C. C. and Crook, D. L. (1985). Breakdown Energy of Metal (BEM) - A New Technique for Monitoring Metallization Reliability at Wafer Level. In Proc. IRPS, 108-114.
- 81
-
Hull, D. and Rimmer, D. E. (1959). The Growth of Grain-Boundary Voids Under Stress. Philos. Mag., 4(42):673-687.
- 82
-
Huntington, H. and Grone, A. (1961). Current-Induced Marker Motion in Gold Wires. J. Phys. Chem. Solids, 20(1):76-87.
- 83
-
Intel (2014). http://www.intel.com/content/www/us/en/silicon-innovations/intel-14nm- technology.html.
- 84
-
ITRS (2011). International Technology Roadmap for Semiconductor, Interconnect. http://www.itrs.net.
- 85
-
Johnson, C. (2009). Numerical Solutions Of Partial Differential Equations By The Finite Element Method. Dover Publications.
- 86
-
Jones, R. E. and Smith, L. D. (1987). A New Wafer-Level Isothermal Joule-Heated Electromigration Test for Rapid Testing of Integrated-Circuit Interconnect. J. Appl. Phys., 61(9):4670-4678.
- 87
-
Justison, P. R. (2003). Analysis of Electromigration in Single- and Dual-Inlaid Cu Interconnects. PhD thesis, University of Texas at Austin, Faculty of the Graduate School.
- 88
-
Kaltenbacher, M. (2007). Numerical Simulation of Mechatronic Sensors and Actuators. Springer Berlin Heidelberg, 2nd edition.
- 89
-
Keyes, R. W. (2006). The Impact of Moore's Law. IEEE Solid State Circuits News., 11(5):25-27.
- 90
-
Kilby, J. S. (2000). The Integrated Circuit's Early History. Proc. IEEE, 88(1):109-111.
- 91
-
Kirchheim, R. (1992). Stress and Electromigration in Al-Lines of Integrated Circuits.
Acta Metall. Mater., 40(2):309-323.
- 92
-
Knorr, D. B. and Rodbell, K. P. (1993). Effects of Texture, Microstructure, and Alloy Content on Electromigration of Aluminum-Based Metallization. In Proc. SPIE, 1805:210-221.
- 93
-
Korhonen, M. A., Børgesen, P., Tu, K. N., and Li, C. (1993). Stress Evolution due to Electromigration in Confined Metal Lines. J. Appl. Phys., 73(8):3790-3799.
- 94
-
Koyanagi, M. (2011). 3D Integration Technology and Reliability. In Proc. IRPS,
3F.1.1-3F.1.7.
- 95
-
Kraft, J., Schrank, F., Teva, J., Siegert, J., Koppitsch, G., Cassidy, C., Wachmann, E., Altmann, F., Brand, S., Schmidt, C., and Petzold, M. (2011). 3D Sensor Application With Open Through Silicon Via Technology. In Proc. ECTC, 560-566.
- 96
-
Kraft, O. and Arzt, E. (1997). Electromigration Mechanisms in Conductor Lines: Void Shape Changes and Slit-Like Failure. Acta Mater., 45(4):1599-1611.
- 97
-
Kumar, P. and Sorbello, R. (1975). Linear Response Theory of the Driving Forces for Electromigration. Thin Solid Films, 25(1):25-35.
- 98
-
Landau, L. D. and Livshits, E. M. (1959). Theory of Elasticity. Pergamon, New York, 1st edition.
- 99
-
Lane, M. W., Liniger, E. G., and Lloyd, J. R. (2003). Relationship Between Interfacial Adhesion and Electromigration in Cu Metallization. J. Appl. Phys., 93(3):1417-1421.
- 100
-
Larche, F. and Cahn, J. (1985). The Interactions of Composition and Stress in Crystalline Solids. Acta Metall., 33(3):331-357.
- 101
-
Lau, F., Mader, L., Mazure, C., Werner, C., and Orlowski, M. (1989). A Model for Phosphorus Segregation at the Silicon-Silicon Dioxide Interface. Appl. Phys. A, 49(6):671-675.
- 102
-
Lin, M. (2006). A Thermodynamic Framework for Damage Mechanics of Electromigration and Thermomigration. PhD thesis, University of New York at Buffalo, Faculty of the Graduate School of State.
- 103
-
Lloyd, J. (1999). Electromigration and Mechanical Stress. Microelectron. Eng., 49(1-2):51-64.
- 104
-
Lloyd, J. (2007). Black's Law Revisited - Nucleation and Growth in Electromigration Failure. Microelectr. Reliab., 47(9-11):1468-1472.
- 105
-
Lloyd, J., Clemens, J., and Snede, R. (1999). Copper Metallization Reliability. Microelectr. Reliab., 39(11):1595-1602.
- 106
-
Lu, J.-Q., Rose, K., and Vitkavage, S. (2007). 3D Integration: Why, What, Who, When? Future Fab Intl., (23):25-27.
- 107
-
Mahadevan, M. and Bradley, R. M. (1999). Phase Field Model of Surface Electromigration in Single Crystal Metal Thin Films. Phys. D, 126(3-4):201-213.
- 108
-
Mahadevan, M. and Bradley, R. M. (1999). Simulations and Theory of Electromigration-Induced Slit Formation in Unpassivated Single-Crystal Metal Lines. Phys. Rev. B, 59(16):11037-11046.
- 109
-
Malta, D., Vick, E., Goodwin, S., Gregory, C., Lueck, M., Huffman, A., and Temple, D. (2010). Fabrication of TSV-Based Silicon Interposers. In Proc. 3DIC, 1-6.
- 110
-
Meinshausen, L., Frémont, H., Weide-Zaage, K., and Plano, B. (2013). Electro- and Thermomigration-Induced IMC Formation in SnAg3.0Cu0.5 Solder Joints on Nickel Gold Pads. Microelectr. Reliab., 53(9-11):1575-1580.
- 111
-
Meinshausen, L., Weide-Zaage, K., and Frémont, H. (2015). Dynamical IMC-Growth Calculation. Microelectr. Reliab., 55(9-10):1832-1837.
- 112
-
Milne, I., Karihaloo, B., and Ritchie, R. (2003). Comprehensive Structural Integrity: Interfacial and Nanoscale Failure. Comprehensive Structural Integrity. Elsevier Pergamon.
- 113
-
Moore, G. E. (1975). Progress in Digital Integrated Electronics. In Proc. IEDM, 21:11-13.
- 114
-
Moore, G. E. (1998). Cramming More Components Onto Integrated Circuits. Proc. IEEE, 86(1):82-85.
- 115
-
Motoyoshi, M. (2009). Through-Silicon Via (TSV). Proc. IEEE, 97(1):43-48.
- 116
-
Nikishkov, G. P. (2004). Introduction to the Finite Element Method. University of
Aizu.
- 117
-
Nobelprize.org (2013). The History of the Integrated Circuit, Nobel Media AB. http://www.nobelprize.org.
- 118
-
Oates, A. S. and Lin, M. H. (2009). Electromigration Failure Distributions of Cu/Low- k Dual-Damascene Vias: Impact of the Critical Current Density and a New Reliability Extrapolation Methodology. IEEE Trans. Device Mater. Rel., 9(2):244-254.
- 119
-
Oono, Y. and Puri, S. (1988). Study of Phase-Separation Dynamics by Use of Cell Dynamical Systems. I. Modeling. Phys. Rev. A, 38(1):434-453.
- 120
-
Ozisik, M. N. (1993). Heat Conduction. Wiley-Interscience, 2nd edition.
- 121
-
Pasco, R. W. and Schwarz, J. A. (1983). The Application of a Dynamic Technique to
the Study of Electromigration Kinetics. In Proc. IRPS, 10-23.
- 122
-
Pavlidis, V. F. and Friedman, E. G. (2008). Three-Dimensional Integrated Circuit
Design (Systems on Silicon). Morgan Kaufmann.
- 123
-
Pavlou, D. G. (2015). Essentials of the Finite Element Method : for Mechanical and
Structural Engineers. Academic Press, 1st edition.
- 124
-
Raj, R. and Ashby, M. (1975). Intergranular Fracture at Elevated Temperature. Acta
Metall., 23(6):653-666.
- 125
-
Reddy, J. (2005). An Introduction to the Finite Element Method. McGraw-Hill
Education (ISE Editions), 3rd edition.
- 126
-
Riley, G. (2000). Introduction to Flip Chip: What, Why, How. http://www.FlipChips.com.
- 127
-
Root, B. J. and Turner, T. (1985). Wafer Level Electromigration Tests for Production
Monitoring. In Proc. IRPS, 100-107.
- 128
-
Rosenberg, R. and Berenbaum, L. (1968). Resistance Monitoring and Effects of Nonadhesion During Electromigration in Aluminum Films. Appl. Phys. Lett., 12(5):201-204.
- 129
-
Rosenberg, R. and Ohring, M. (1971). Void Formation and Growth During Electromigration in Thin Films. J. Appl. Phys., 42(13):5671-5679.
- 130
-
Sadasiva, S., Subbarayan, G., Jiang, L., and Pantuso, D.(2012).Numerical Simulations of Electromigration and Stress Migration Driven Void Evolution in Solder Interconnects. J. Electron. Packaging, 134:20907-209079.
- 131
-
Salah, K., Ismail, Y., and El-Rouby, A. (2015). Arbitrary Modeling of TSVs for 3D Integrated Circuits. Analog Circuits and Signal Processing. Springer International Publishing, 1st edition.
- 132
-
Sarychev, M., Zhitnikov, Y., Borucki, L., Liu, C.-L., and Makhviladze, T. (2000). A New, General Model for Mechanical Stress Evolution During Electromigration. Thin Solid Films, 365(2):211-218.
- 133
-
Sarychev, M. E., Zhitnikov, Y. V., Borucki, L., Liu, C.-L., and Makhviladze, T. M. (1999). General Model for Mechanical Stress Evolution During Electromigration. J. Appl. Phys., 86(6):3068-3075.
- 134
-
Schaich, W. L. (1976). Driving Forces for Electromigration by Linear Response. Phys. Rev. B, 13(8):3360-3367.
- 135
-
Schimschak, M. and Krug, J. (2000). Electromigration-Driven Shape Evolution of Two-Dimensional Voids. J. Appl. Phys., 87(2):695-703.
- 136
-
Seith, W. and Wever, H. (1951). Die Aktivitaet bei Der Diffusion in Metallischen Dreistoffsystemen. Z. Elktrochem. Angew. P., 55(5):380-384.
- 137
-
Sham, L. J. (1975). Microscopic Theory of the Driving Force in Electromigration. Phys. Rev. B, 12(8):3142-3149.
- 138
-
Shatzkes, M. and Lloyd, J. R. (1986). A Model for Conductor Failure Considering Diffusion Concurrently With Electromigration Resulting in a Current Exponent of 2. J. Appl. Phys., 59(11):3890-3893.
- 139
-
Sinha, A. (1982). Metallization Technology for Very-Large-Scale Integrated Circuits. Thin Solid Films, 90(3):271-285.
- 140
-
Skaupy, F. (1914). Die Elektrizitätsleitung in Metallen. Verhandl. Deut. Phys. Ges., 16:156.
- 141
-
Son, H. Y., Noh, S. K., Jung, H. H., Lee, W. S., Oh, J. S., and Kim, N. S. (2013). Reliability Studies on Micro-Bumps for 3-D TSV Integration. In Proc. ECTC, 29-34.
- 142
-
Sorbello, R. S. (1985). Theory of the Direct Force in Electromigration. Phys. Rev. B, 31(2):798-804.
- 143
-
Sorensen, M. R., Mishin, Y., and Voter, A. F. (2000). Diffusion Mechanisms in Cu
Grain Boundaries. Phys. Rev. B, 62(6):3658-3673.
- 144
-
Sukharev, V. (2005). Physically Based Simulation of Electromigration-induced Degra- dation Mechanisms in Dual-Inlaid Copper Interconnects. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 24(9):1326-1335.
- 145
-
Sukharev, V., Kteyan, A., and Zschech, E. (2012). Physics-Based Models for EM and SM Simulation in Three-Dimensional IC Structures. IEEE Trans. Device Mater. Rel., 12(2):272-284.
- 146
-
Sukharev, V. and Zschech, E. (2004). A Model for Electromigration-Induced Degradation Mechanisms in Dual-Inlaid Copper Interconnects: Effect of Interface Bonding Strength. J. Appl. Phys., 96(11):6337-6343.
- 147
-
Sukharev, V., Zschech, E., and Nix, W. D. (2007). A Model for Electromigration- Induced Degradation Mechanisms in Dual-Inlaid Copper Interconnects: Effect of Microstructure. J. Appl. Phys., 102(5):053505-1-053505-14.
- 148
-
Tan, C. M., Gan, Z., Li, W., and Hou, Y. (2011). Applications of Finite Element Methods for Reliability Studies on ULSI Interconnections. Springer Series in Reliability Engineering. Springer-Verlag London, 1st edition.
- 149
-
Tan, C. M. and Roy, A. (2007). Electromigration in ULSI Interconnects. Mater. Sci. Eng. R-Rep., 58(1-2):1-75.
- 150
-
Tan, C. S. (2011). 3D Integration for VLSI Systems. Pan Stanford Pub.
- 151
-
Timoshenko, S. and Goodier, J. N. (1969). Theory of Elasticity. Tokyo : McGraw-Hill
Kogakusha Ltd, 3rd edition.
- 152
-
Tio Castro, D., Hoofman, R. J. O. M., Michelon, J., Gravesteijn, D. J., and Bruynser- aede, C. (2007). Void Growth Modeling Upon Electromigration Stressing in Narrow Copper Lines. J. Appl. Phys., 102(12):123515-1-123515-12.
- 153
-
Totta, P. A. and Puttlitz, K. J. (2001). Area Array Interconnection Handbook. Springer US, 1st edition.
- 154
-
Vaidya, S., Sheng, T. T., and Sinha, A. K. (1980). Linewidth Dependence of Electro- migration in Evaporated Al-0.5%Cu. Appl. Phys. Lett., 36:464-466.
- 155
-
Van der Plas, G. et al. (2011). Design Issues and Considerations for Low-Cost 3-D TSV IC Technology. J. Solid-State Circuits, 46(1):293-307.
- 156
-
Wang, W., Suo, Z., and Hao, T.-H. (1996). A Simulation of Electromigration-Induced Transgranular Slits. J. Appl. Phys., 79(5):2394-2403.
- 157
-
Weide-Zaage, K. (2008). Simulation of Migration Effects in Solder Bumps. IEEE Trans. Device Mater. Rel., 8(3):442-448.
- 158
-
Weide-Zaage, K., Schlobohm, J., Rongen, R., Voogt, F., and Roucou, R. (2014). Simulation and Measurement of the Flip Chip Solder Bumps With a Cu-Plated Plastic Core. Microelectr. Reliab., 54(6-7):1206-1211.
- 159
-
Weldezion, A., Weerasekera, R., Pamunuwa, D. B., Zheng, L.-R., and Tenhunen, H. (2009). Bandwidth Optimization for Through Silicon Via (TSV) Bundles in 3D Integrated Circuits. In Proc. DATE.
- 160
-
Yoh, G. and Najm, F. N. (2000). A Statistical Model for Electromigration Failures. In Proc. ISQED, 45-50.
- 161
-
Zienkiewicz, O. C., Taylor, R. L., and Fox, D. (2014). The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, 7th edition.
- 162
-
Zisser, W., Ceric, H., Weinbub, J., and Selberherr, S. (2014). Electromigration Reliability of Open TSV Structures. Microelectron. Reliab., 54(9-10):2133-2137.
M. Rovitto: Electromigration Reliability Issue in Interconnects for Three-Dimensional Integration Technologies