[1] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road
to cross in deep submicron silicon semiconductor manufacturing,”
[2] D. K. Schroder, “Negative bias temperature instability: What do we understand?,”
[3] A. Goetzberger and H. Nigh, “Surface charge after annealing of Al-SiO
[4] Y. Miura and Y. Matukura, “Investigation of silicon-silicon dioxide interface using
MOS structure,”
[5] G. Groeseneken, R. Degraeve, B. Kaczer, and K. Martens, “Trends and perspectives
for electrical characterization and reliability assessment in advanced CMOS technologies,”
in
[6] A. Kerber and W. McMahon, “Front end of line (FEOL) reliability in CMOS
technologies,” in
[7] K. Jeppson and C. Svensson, “Negative bias stress of MOS devices at high electric
fields and degradation of MNOS devices,”
[8] H. Kufluoglu and M. Alam, “Theory of interface-trap-induced NBTI degradation for
reduced cross section MOSFETs,”
[9] T. Grasser, W. Goes, and B. Kaczer, “Dispersive transport and negative bias
temperature instability: Boundary conditions, initial conditions, and transport models,”
[10] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field
charge build up instability at the Si/SiO
[11] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert,
G. Groeseneken, and M. Goodwin, “Disorder-controlled-kinetics model for negative bias
temperature instability and its experimental verification,” in
[12] H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder,
“Analysis of NBTI degradation- and recovery-behavior based on ultra fast
[13] T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer, “The universality of NBTI
relaxation and its implications for modeling and characterization,” in
[14] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J.
Wagner, F. Schanovsky, J. Franco, P. J. Roussel, and M. Nelhiebel, “Recent advances
in understanding the bias temperature instability,” in
[15] S. Mahapatra, V. D. Maheta, A. E. Islam, and M. A. Alam, “Isolation of NBTI
stress generated interface trap and hole-trapping components in PNO p-MOSFETs,”
[16] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, A. Jain, and M. Alam, “A
critical re-evaluation of the usefulness of R-D framework in predicting NBTI stress and
recovery,” in
[17] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, and M. Alam,
“Characterization and modeling of NBTI stress, recovery, material dependence and AC
degradation using R-D framework,” in
[18] K. Joshi, S. Mukhopadhyay, N. Goel, and S. Mahapatra, “A consistent physical
framework for N and P BTI in HKMG MOSFETs,” in
[19] A. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, and M. Alam, “Recent issues
in negative-bias temperature instability: Initial degradation, field dependence of interface
trap generation, hole trapping effects, and relaxation,”
[20] A. E. Islam, H. Kufluoglu, D. Varghese, and M. A. Alam, “Critical analysis of
short-term negative bias temperature instability measurements: Explaining the effect of
time-zero delay for on-the-fly measurements,”
[21] H. Kufluoglu and M. Alam, “A generalized reaction-diffusion model with explicit
H-H
[22] A. Islam, H. Kufluoglu, D. Varghese, and M. Alam, “Temperature dependence of
the negative bias temperature instability in the framework of dispersive transport,”
[23] A. Islam and M. Alam, “Analyzing the distribution of threshold voltage
degradation in nanoscale transistors by using reaction-diffusion and percolation theory,”
[24] F. Schanovsky and T. Grasser, “On the microscopic limit of the reaction-diffusion
model for negative bias temperature instability,” in
[25] F. Schanovsky and T. Grasser, “On the microscopic limit of
the modified reaction-diffusion model for negative bias temperature instability,” in
[26]
T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “A
two-stage model for negative bias temperature instability,” in
[27] T. Grasser, B. Kaczer, and W. Gös, “An energy-level perspective of bias temperature
instability,” in
[28] T. Grasser, W. Gös, and B. Kaczer, “Modeling bias temperature instability during
stress and recovery,” in
[29] T. Grasser, B. Kaczer, T. Aichinger, W. Gös, and M. Nelhiebel, “Defect creation
stimulated by thermally activated hole trapping as the driving force behind negative bias
temperature instability in SiO
[30] A. Lelis and T. Oldham, “Time dependence of switching oxide traps,”
[31] T. Grasser, H. Reisinger, P. Wagner, and B. Kaczer, “Time-dependent defect
spectroscopy for characterization of border traps in metal-oxide-semiconductor
transistors,”
[32] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “The time dependent defect
spectroscopy (TDDS) for the characterization of the bias temperature instability,” in
[33] M. Toledano-Luque, B. Kaczer,
P. J. Roussel, M. Cho, T. Grasser, and G. Groeseneken, “Temperature dependence of
the emission and capture times of SiON individual traps after positive bias temperature
stress,”
[34] M. Kirton and M. Uren, “Capture and emission kinetics of individual Si:SiO
[35] D. Fleetwood, H. Xiong, Z.-Y. Lu, C. Nicklaw, J. Felix, R. Schrimpf, and
S. Pantelides, “Unified model of hole trapping, 1/f noise, and thermally stimulated current
in mos devices,”
[36] P. Wagner, T. Aichinger, T. Grasser, M. Nelhiebel, and L. Vandamme, “Possible
correlation between flicker noise and bias temperature stress,” in
[37] T. Grasser, “Stochastic charge trapping in oxides: From random telegraph noise to
bias temperature instabilities,”
[38] P. M. Lenahan and J. J. F. Conley, “What can electron paramagnetic resonance tell
us about the Si/SiO
[39] C. R. Helms and E. H. Poindexter, “The silicon-silicon dioxide system: Its
microstructure and imperfections,”
[40] S. P. Karna, H. A. Kurtz, A. C. Pineda, W. M. Shedd, and R. D. Pugh,
[41] P. M. Lenahan,
[42] J. Ryan, P. Lenahan, T. Grasser, and H. Enichlmair, “Recovery-free electron spin
resonance observations of NBTI degradation,” in
[43] P. M. Lenahan and P. V. Dressendorfer, “An electron spin resonance study of
radiation-induced electrically active paramagnetic centers at the Si/SiO
[44] E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M. Johnson, and
D. K. Biegelsen, “Electronic traps and P
[45] A. Stesmans, B. Nouwen, and V. V. Afanas’ev, “
[46] P. Lenahan and J. Conley, J.R., “A comprehensive physically based predictive model
for radiation damage in MOS systems,”
[47] P. M. Lenahan and P. V. Dressendorfer, “Hole traps and trivalent silicon centers in
metal/oxide/silicon devices,”
[48] P. M. Lenahan, W. L. Warren, D. T. Krick, P. V. Dressendorfer, and B. B. Triplett,
“Interaction of molecular hydrogen with trapped hole
[49] V. V. Afanas’ev, J. M. M. de Nijs, P. Balk, and A. Stesmans, “Degradation of
the thermal oxide of the Si/SiO
[50] E. H. Pointdexter and W. L. Warren, “Paramagnetic point defects in amorphous
thin films of SiO
[51] P. E. Bunson, M. D. Ventra, S. T. Pantelides, D. M. Fleetwood, and R. D.
Schrimpf, “Hydrogen-related defects in irradiated SiO
[52] V. Afanas’ev and A. Stesmans, “Leakage currents induced in ultrathin oxides on
(100)Si by deep-UV photons,”
[53] V. V. Afanas’ev and A. Stesmans, “Proton nature of radiation-induced positive
charge in SiO
[54] K. L. Yip and W. B. Fowler, “Electronic structure of E’
[55] E. P. O’Reilly and J. Robertson, “Theory of defects in vitreous silicon dioxide,”
[56] J. K. Rudra, W. B. Fowler, and F. J. Feigl, “Model for the E’
[57] J. K. Rudra and W. B. Fowler, “Oxygen vacancy and the E
[58] M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, “Structure and hyperfine
parameters of
[59] P. E. Blöchl, “First-principles calculations of defects in oxygen-deficient silica exposed
to hydrogen,”
[60] T. Uchino, M. Takahashi, and T. Yoko, “E’ centers in amorphous SiO
[61] A. Stirling and A. Pasquarello, “First-principles modeling of paramagnetic Si
dangling-bond defects in amorphous SiO
[62] D. J. Chadi, “Negative-U property of the oxygen vacancy defect in SiO
[63] M. Busso, S. Casassa, C. Pisani, and V. B. Sulimov, “Ab initio simulation of the
oxygen vacancy bistability in pure and Ge-doped
[64] Z.-Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides,
“Structure, properties, and dynamics of oxygen vacancies in amorphous SiO
[65] C. J. Nicklaw, Z.-Y. Lu, D. Fleetwood, R. Schrimpf, and S. Pantelides, “The
structure, properties, and dynamics of oxygen vacancies in amorphous SiO
[66] V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, and A. M. Stoneham,
“Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy
in
[67] L. Martin-Samos, Y. Limoge, N. Richard, J. P. Crocombette,
G. Roma, E. Anglada, and E. Artacho, “Oxygen neutral defects in silica: Origin of the
dirstribution of the formation energies,”
[68] S. Mukhopadhyay, P. V. Sushko, A. M. Stoneham, and A. L. Shluger, “Modeling of
the structure and properties of oxygen vacancies in amorphous silica,”
[69] S. Mukhopadhyay, P. V. Sushko, A. M. Stoneham, and A. L. Shluger, “Correlation
between the atomic structure, formation energies, and optical absorption of neutral oxygen
vacancies in amorphous silica,”
[70] P. Sushko, S. Mukhopadhyay, A. Stoneham, and A. Shluger, “Oxygen vacancies in
amorphous silica: structure and distribution of properties,”
[71] P. V. Sushko, S. Mukhopadhyay, A. S. Mysovsky, V. B. Sulimov, A. Taga, and
A. L. Shluger, “Structure and properties of defects in amorphous silica: new insights from
embedded cluster calculations,”
[72] A. Kimmel, P. Sushko, A. Shluger, and G. Bersuker, “Positive and negative oxygen
vacancies in amorphous silica,”
[73] D. M. Fleetwood and J. H. Scofield, “Evidence that similar point defects cause 1/
[74] D. Fleetwood, “Fast and slow border traps in mos devices,”
[75] A. Yokozawa, A. Oshiyama, Y. Miyamoto, and S. Kumashiro, “Oxygen vacancy
with large lattice distortion as an origin of leakage currents in SiO
[76] J. W. McPherson and H. C. Mogul, “Underlying physics of the thermochemical E
model in describing low-field time-dependent dielectric breakdown in SiO
[77] A. Edwards, P. Sushko, A. Shluger, and V. Sulimov, “Embedding techniques for
irradiation-induced defects in crystalline SiO
[78] S. Mukhopadhyay, P. V. Sushko, A. H. Edwards, and A. L. Shluger, “Calculation
of relative concentrations of
[79] R. A. Weeks and M. Abraham, “Electron spin resonance of irradiated quartz: Atomic
hydrogen,”
[80] E. H. Poindexter, “Chemical reactions of hydrogenous species in the SiSiO
[81] E. Cartier and J. Stathis, “Atomic hydrogen-induced degradation of the SiSiO
[82] M. Nelhiebel, J. Wissenwasser, T. Detzel, A. Timmerer, and E. Bertagnolli,
“Hydrogen-related influence of the metallization stack on characteristics and reliability
of a trench gate oxide,”
[83] V. V. Afanas’ev and A. Stesmans, “H-complexed oxygen vacancy in SiO
[84] P. E. Blöchl and J. H. Stathis, “Hydrogen electrochemistry and stress-induced leakage
current in silica,”
[85] F. Schanovsky, W. Goes, and T. Grasser, “Multi-phonon hole-trapping from first
principles,”
[86] F. Schanovsky, W. Goes, and T. Grasser, “An advanced description of oxide traps
in MOS transistors and its relation to DFT,”
[87] B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. Roussel,
and G. Groeseneken, “NBTI from the perspective of defect states with widely distributed
time scales,” in
[88] M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln,”
[89] J. J. Markham, “Electron-nuclear wave functions in multiphonon processes,”
[90] M. Born and K. Huang,
[91] A. M. Stoneham,
[92] M. Born, “Kopplung der Elektronen- und Kernbewegung in Molekeln und Kristallen,”
[93] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central field.
part I. theory and methods,”
[94] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central field. part
II. some results and discussion,”
[95] D. R. Hartree, “The wave mechanics of an atom with a non-coulomb central field.
part III. term values and intensities in series in optical spectra,”
[96] R. M. Martin,
[97] I. N. Levine,
[98] C. Cohen-Tannoudji, B. Diu, and F. L. V. . 2,
[99] J. B. Foresman and A. Frisch,
[100] R. G. Parr and W. Yang,
[101] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,”
[102] R. M. Nieminen,
[103] P. Deák, L. C. Snyder, R. K. Singh, and J. W. Corbett, “Evaluation of semiempirical
quantum-chemical methods in solid-state applications. I. molecular-cluster calculations of
defects in silicon,”
[104] P. Deák and L. C. Snyder, “Evaluation of semiempirical quantum-chemical methods
in solid-state applications. II. cyclic-cluster calculations of silicon,”
[105] K. C. Snyder and W. B. Fowler, “Oxygen vacancy in
[106] D. E. Boucher and G. G. DeLeo, “Tight-binding quantum molecular-dynamics
simulations of hydrogen in silicon,”
[107] M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, “Intrinsic point
defects in crystalline silicon: Tight-binding molecular dynamics studiesof self-diffusion,
interstitial-vacancy recombination, and formation volumes,”
[108] R. Biswas, L. Qiming, B. C. Pan, and Y. Yoon, “Mechanism for hydrogen diffusion
in amorphous silicon,”
[109] M. Schaible, “Empirical molecular dynamics modeling of silicon and silicon dioxide:
A review,”
[110] K. Vollmayr, W. Kob, and K. Binder, “Cooling-rate effects in amorphous silica: A
computer-simulation study,”
[111] R. M. van Ginhoven, H. Jonsson, and L. R. Corrales, “Silica glass structure
generation for ab initio calculations using small samples of amorphous silica,”
[112] M. Tuckerman,
[113] R. Biswas, Y.-P. Li, and B. Pan, “Isotopic effect between hydrogen and deuterium
emission in silicon,”
[114] D. Gillespie, “A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions,”
[115] D. T. Gillespie, “Simulation methods in systems biology,” in
[116] H. Sumi, “Phonon-kick mechanism for defect reactions enhanced by electronic
excitation,”
[117] C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by
multiphono emission in gaas and gap,”
[118] T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P. Wagner, J. Franco,
M. Nelhiebel, and B. Kaczer, “The ‘permanent’ component of NBTI: Composition and
annealing,” in
[119] J. M. Haile,
[120] D. Frenkel and B. Smit,
[121] A. F. Voter, F. Montalenti, and T. C. Germann, “Extending the time scale in
atomistic simulation of materials,”
[122] K. Mikkelsen and M. Ratner, “Electron tunneling in solid-state electron-transfer
reactions,”
[123] V. Abakumov, V. Perel, and I. Yassievich,
[124] M. D. Newton, “Quantum chemical probes of electron-transfer kinetics: the nature of
donor-acceptor interactions,”
[125] D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan,
P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E.
Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S.
Schanze, J. Yardley, and X. Zhu, “Charge transfer on the nanoscale: Current status,”
[126] P. E. S. Wormer and A. van der Avoird,
[127] K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in
f-centers,”
[128] R. Kubo, “Thermal ionization of trapped electrons,”
[129] T. H. Keil, “Shapes of impurity absorption bands in solids,”
[130] B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in
semiconductors and insulators,”
[131] A. M. Stoneham, “Non-radiative transitions in semiconductors,”
[132] K. Huang, “Adiabatic approximation theory and static coupling theory of
nonradiative transition,”
[133] K. Peuker and A. Schenk, “Grundlagen der
Theorie der strahlungslosen Multi-Phonon-Rekombination,”
[134] G. Helmis, “Zur Theorie der Störstellenelektronen. I Optische Übergänge,”
[135] G. Helmis, “Zur Theorie der Störstellenelektronen. II Strahlungslose Übergänge,”
[136] E. Gutsche, “Non-condon approximations and the static approach in the theory of
non-radiative multiphonon transitions,”
[137] M. G. Burt, “On the relation between static and adiabatic coupling schemes for
calculating non-radiative multiphonon transition rates,”
[138] M. G. Burt, “The relation between various coupling schemes for calculating
non-radiative multiphonon transition rates,”
[139] A. F. J. Levi,
[140] F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser, “A multi scale
modeling approach to non-radiative multi phonon transitions at oxide defects in MOS
structures,”
[141] M. Lax, “The franck-condon principle and its application to crystals,”
[142] A. Schenk, K. Irmscher, D. Suisky, R. Enderlein, F. Bechstedt, and H. Klose,
“(Mo-P-10) field dependence of the emission rate at deep centers in Si and GaAs,”
[143] S. Makram-Ebeid and M. Lannoo, “Electric-field-induced phonon-assisted tunnel
ionization from deep levels in semiconductors,”
[144] S. Makram-Ebeid and M. Lannoo, “Quantum model for phonon-assisted tunnel
ionization of deep levels in a semiconductor,”
[145] D. A. McQuarrie, “Stochastic approach to chemical kinetics,”
[146] P. Hänggi, P. Talkner, and M. Borkovec, “Reaction-rate theory: fifty years after
Kramers,”
[147] S. Torquato and C. L. Y. Yeong, “Universal scaling for diffusion-controlled reactions
among traps,”
[148] S. S. Andrews and D. Bray, “Stochastic simulation of chemical reactions with spatial
resolution and single molecule detail,”
[149] R. Erban and S. J. Chapman, “Stochastic modelling of reaction-diffusion processes:
algorithms for bimolecular reactions,”
[150] S. A. Isaacson and D. Isaacson, “Reaction-diffusion master equation, diffusion-limited
reactions, and singular potentials,”
[151] D. Fange, O. G. Berg, P. Sjöberg, and J. Elf, “Stochastic reaction-diffusion kinetics
in the microscopic limit,”
[152] G. Malavasi, M. C. Menziani, A. Pedone, and U. Segre, “Void size distribution in
MD-modelled silica glass structures,”
[153] A. Bongiorno, L. Colombo, and F. Cargnoni, “Hydrogen diffusion in crystalline
SiO
[154] V. Huard, M. Denais, and C. Parthasarathy, “NBTI degradation: From physical
mechanisms to modelling,”
[155] B. Tuttle, “Energetics and diffusion of hydrogen in SiO
[156] S. T. Pantelides, L. Tsetseris, S. Rashkeev,
X. Zhou, D. Fleetwood, and R. Schrimpf, “Hydrogen in MOSFETs - a primary agent of
reliability issues,”
[157] G. Panagopoulos and K. Roy, “A physics-based three-dimensional analytical model
for RDF-induced threshold voltage variations,”
[158] S. Choi, Y. Park, C.-K. Baek, and S. Park, “An improved 3D Monte Carlo simulation
of reaction diffusion model for accurate prediction on the NBTI stress/relaxation,” in
[159] G. Pacchioni and G. Ieranò, “
[160] N. Lopez, F. Illas, and G. Pacchioni, “Mechanisms of proton formation from
interaction of H
[161] M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H
[162] A. H. Edwards, W. Shedd, and R. Pugh, “Theory of H in SiO
[163] A. S. Mysovsky, P. V. Sushko, S. Mukhopadhyay, A. H. Edwards, and A. L. Shluger,
“Calibration of embedded-cluster method for defect studies in amorphous silica,”
[164] S. Mukhopadhyay, P. V. Sushko, V. A. Mashkov, and A. L. Shluger, “Spectroscopic
features of dimer and dangling bond
[165] A. Alkauskas and A. Pasquarello, “Effect of improved band-gap description in density
functional theory on defect energy levels in
[166] J. Sarnthein, A. Pasquarello, and R. Car, “Structural and electronic properties of
liquid and amorphous SiO
[167] J. Sarnthein, A. Pasquarello, and R. Car, “Model of vitreous SiO
[168] E. Calabrese and W. Fowler, “Electronic energy-band structure of
[169] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set,”
[170] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method,”
[171] G. Kresse, M. Marsman, and J. Furthmüller,
[172] G. Henkelman, B. P. Uberuaga, and H. Jónsson, “A climbing image nudged elastic
band method for finding saddle points and minimum energy paths,”
[173] E. H. Nicollian and J. R. Brews,
[174] R. D. Mattuck,
[175] K. M. Kramer and W. N. G. Hitchon,
[176] M. Anantram, M. Lundstrom, and D. Nikonov, “Modeling of nanoscale devices,”
[177] A. Schenk,
[178] T. Ayalew, T. Binder, J. Cervenka,
K. Dragosits, R. Entner, A. Gehring, T. Grasser, M. Gritsch, R. Klima, M. Knaipp,
H. Kosina, R. Mlekus, V. Palankovski, R. Rodriguez-Torres, M. Rottinger, G. Schrom,
S. Selberherr, M. Stockinger, and S. Wagner,
[179] M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek,
O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and
S. Selberherr, “A multi-purpose schrödinger-poisson solver for tcad applications,”
[180] A. Palma, A. Godoy, J. A. Jemènez-Tejada, J. E. Carceller,
and J. A. Lòpez-Villanueva, “Quantum two-dimensional calculation of time constants of
random telegraph signals in metal-oxide-semiconductor structures,”
[181] D. Garetto, Y. M. Randiamihaja, D. Rideau, E. Dornel, W. F. Clark, A. Schmid,
V. Huard, H. Jaouen, and Y. Leblebic, “Small signal analysis of electrically-stressed
oxides with poisson-schroedinger based multiphonon capture model,” in
[182] P. Hehenberger, W. Gös, O. Baumgartner, J. Franco, B. Kaczer, and T. Grasser,
“Quantum-mechanical modeling of NBTI in high-k SiGe MOSFETs,” in
[183] G. D. Mahan,
[184] A. Schenk, K. Irmscher, D. Suisky, R. Enderlein, F. Bechstedt, and H. Klose,
“Electric field effect on multiphonon transitions at deep centers,” in
[185] W. B. Fowler, J. K. Rudra, M. E. Zvanut, and F. J. Feigl, “Hysteresis and
franck-condon relaxation in insulator-semiconductor tunneling,”
[186] F. Schanovsky, “Ab-initio calculation of the vibrational influence on hole-trapping,”
in
[187] O. Engstrom and H. G. Grimmeiss, “Vibronic states of silicon-silicon dioxide interface
traps,”
[188] O. Engström, “Influence of entropy properties on measured trap energy distributions
at insulator-semiconductor interfaces,”
[189] C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects
and impurities: Applications to III-nitrides,”
[190] W. Gös and T. Grasser, “First-principles investigation on oxide trapping,” in
[191] W. Goes, M. Karner, V. Sverdlov, and T. Grasser, “A rigorous model for trapping
and detrapping in thin gate dielectrics,” in
[192] A. Alkauskas, P. Broqvist, and A. Pasquarello, “Defect energy levels in density
functional calculations: Alignment and band gap problem,”
[193] W. Goes, M. Karner, V. Sverdlov, and T. Grasser, “Charging and discharging of
oxide defects in reliability issues,”
[194] A. Alkauskas, J. L. Lyons, D. Steiauf, and C. G. Van de Walle, “First-principles
calculations of luminescence spectrum line shapes for defects in semiconductors: The
example of gan and zno,”
[195] A. Schenk, “(Mo-P-22) field-dependent emission rate at deep centers in GaAs by using
a two-phonon mode model,”
[196] A. Schenk, “A model for the field and temperature dependence of Shockley-Read-Hall
lifetimes in silicon,”
[197] F. Ansbacher, “A note on the overlap integral of two harmonic oscillator wave
functions,”
[198] B. Zapol, “New expressions for the overlap integral of two linear harmonic oscillator
wavefunctions,”
[199] F. Iachello and M. Ibrahim, “Analytic and algebraic evaluation of Franck-Condon
overlap integrals,”
[200] P. P. Schmidt, “Computationally efficient recurrence relations for one-dimensional
franck-condon overlap integrals,”
[201] M. Wastl, “Berechnung eindimensionaler Überlappintegrale des harmonischen Oszillators,” bakkalaureatsarbeit, TU Wien, 2011.
[202] J. H. Zheng, H. S. Tan, and S. C. Ng, “Theory of non-radiative capture of carriers by
multiphonon processes for deep centers in semiconductors,”
[203] J. D. Gale,
[204] A. Alkauskas and A. Pasquarello, “Alignment of hydrogen-related defect levels at the
interface,”
[205] B. R. Tuttle, “Theoretical investigation of the valence-band offset between si(001) and
SiO
[206] T. Grasser, H. Reisinger, K. Rott, M. Toledano-Luque, and B. Kaczer, “On the
microscopic origin of the frequency dependence of hole trapping in pMOSFETs,” in
[207] O. Baumgartner, M. Karner, and H. Kosina, “Modeling of high-k-metal-gate-stacks
using the non-equilibrium Green’s function formalism,” in
[208] S. Datta,
[209] W. Shockley and W. T. Read, “Statistics of the recombinations of holes and
electrons,”