[1] F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser, “A multi scale
modeling approach to non-radiative multi phonon transitions at oxide defects in MOS
structures,”
[2] F. Schanovsky and T. Grasser, “On the microscopic limit of the modified
reaction-diffusion model for the negative bias temperature instability,” in
[3] F. Schanovsky and T. Grasser, “Bias temperature instabilities in highly-scaled MOSFETs.” invited; talk: 2012 CMOS Emerging Technologies, Vancouver, BC Canada; 2012-07-18 – 2012-07-21, 2012.
[4] W. Gös, F. Schanovsky, H. Reisinger, B. Kaczer, and T. Grasser, “Bistable defects
as the cause for NBTI and RTN,”
[5] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J.
Wagner, F. Schanovsky, J. Franco, M. Toledano-Luque, and M. Nelhiebel, “The
paradigm shift in understanding the bias temperature instability: From reaction-diffusion
to switching oxide traps,”
[6] F. Schanovsky, W. Gös, and T. Grasser, “Multiphonon hole trapping from
first principles,”
[7] H. Ceric, R. Orio, F. Schanovsky, W. Zisser, and S. Selberherr, “Multilevel
simulation for the investigation of fast diffusivity paths,” in
[8] W. Gös, F. Schanovsky, T. Grasser, H. Reisinger, and B. Kaczer, “Advanced
modeling of oxide defects for random telegraph noise,” in
[9] W. Gös, F. Schanovsky, H. Reisinger, B. Kaczer, and T. Grasser, “Bistable defects as
the cause for NBTI and RTN,” in
[10] F. Schanovsky, O. Baumgartner, and T. Grasser, “Multi scale modeling of multi
phonon hole capture in the context of NBTI,” in
[11] F. Schanovsky and T. Grasser, “On the microscopic limit of the reaction-diffusion
model for the negative bias temperature instability,” in
[12] F. Schanovsky, W. Gös, and T. Grasser, “An advanced description of oxide traps in
MOS transistors and its relation to DFT,”
[13] W. Gös, F. Schanovsky, P. Hehenberger, P.-J. Wagner, and T. Grasser, “Charge
trapping and the negative bias temperature instability,” in
[14] W. Gös, F. Schanovsky, P. Hehenberger, P.-J. Wagner, and T. Grasser, “Charge
trapping and the negative bias temperature instability,” in
[15] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J.
Wagner, F. Schanovsky, J. Franco, P. J. Roussel, and M. Nelhiebel, “Recent advances
in understanding the bias temperature instability,” in
[16] T. Grasser, H. Reisinger, P. Wagner, B. Kaczer, F. Schanovsky, and W. Gös, “The
time dependent defect spectroscopy (TDDS) for the characterization of the bias
temperature instability,” in
[17] F. Schanovsky, W. Gös, and T. Grasser, “Ab-initio calculation of the vibrational
influence on hole-trapping,” in
[18] F. Schanovsky, W. Gös, and T. Grasser, “Hole capture into oxide defects in MOS
structures from first principles,” in
[19] F. Schanovsky, W. Gös, and T. Grasser, “Mulit-phonon hole-trapping from
first-principles,” in
[20] T. Grasser, H. Reisinger, P.-J. Wagner, W. Gös, F. Schanovsky, and B. Kaczer, “The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability.” invited; talk: European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF), Gaeta; 2010-10-11, 2010.
[21] V. Sverdlov, T. Windbacher, F. Schanovsky, and S. Selberherr, “Mobility modeling in
advanced MOSFETs with ultra-thin silicon body under stress,”
[22] V. Sverdlov, O. Baumgartner, H. Kosina, S. Selberherr, F. Schanovsky, and
D. Esseni, “The linear combination of bulk bands-method for electron and hole subband
calculations in strained silicon films and surface layers,” in
[23] V. Sverdlov, O. Baumgartner, T. Windbacher, F. Schanovsky, and S. Selberherr,
“Impact of confinement and stress on the subband parameters in ultra-thin silicon films,”
in
[24] V. Sverdlov, O. Baumgartner, T. Windbacher, F. Schanovsky,
and S. Selberherr, “Impact of confinement of semiconductor and band engineering on
future device performance,” in
[25] V. Sverdlov, O. Baumgartner, T. Windbacher, F. Schanovsky, and S. Selberherr,
“Thickness dependence of the effective masses in a strained thin silicon film,” in
[26] V. Sverdlov, T. Windbacher, O. Baumgartner, F. Schanovsky, and S. Selberherr,
“Valley splitting in thin silicon films from a two-band
[27] F. Schanovsky, “Dispersive transport modeling within the multiple trapping framework,” Master’s thesis, Institut für Mikroelektronik, 2008.
[28] T. Grasser, W. Gös, O. Triebl, P. Hehenberger, P.-J. Wagner, P. Schwaha, R. Heinzl, S. Holzer, R. Entner, S. Wagner, and F. Schanovsky, “3 year report 2005-2007,” tech. rep., E360 - Institut für Mikroelektronik; Technische Universität Wien, 2007.