next up previous contents
Next: B.2.1.2 Overdrive Up: B.2.1 First-Order Loop Previous: B.2.1 First-Order Loop

B.2.1.1 Finite Integrator Gain

The effect of a non-ideal integrator, i.e., finite gain degrades the noise performance to some extent. The integrator frequency response can be modeled as

\begin{displaymath}
H(s) = \frac{1
}{s\tau_0 + 1/A} = \left\{
{
\begin{array...
.../s\tau_0 & 1/A\tau_0 < \vert s\vert \\
\end{array}} \right.
,
\end{displaymath} (B.6)

where A is the integrator gain. This sets a lower limit to the noise power spectral density and to the achievable SNR:

\begin{displaymath}
S/N = \frac{\left<\left\vert x(t)\right\vert^2\right>}{\left<\left\vert e(t)\right\vert^2\right>} A
.
\end{displaymath} (B.7)




G. Schrom