Next:
3.1 Thermal Oxidation Simulators
Up:
Dissertation L. Filipovic
Previous:
2.4.3 Atomic Force Microscope
3.
Simulating Silicon Oxidation
Subsections
3.1
Thermal Oxidation Simulators
3.1.1
History of Oxidation Simulators
3.1.2
Visco-Elastic model using FEM
3.1.3
Simulating Oxide Growth using Volume Expansion
3.2
Oxidation Modeling using Linear Parabolic Equations
3.2.1
Multiple moving interfaces
3.2.1.1
One initial LS description
3.2.1.2
LS describes pre-existing native material
3.2.1.3
LS describes existence of a mask layer
3.2.2
Separating Material Interfaces
3.2.3
LS Surface Vector Motion
3.3
Nitric Acid Oxidation
3.3.1
NAOS Modeling
3.3.1.1
Azeotropic NAOS Method
3.3.1.2
Vapor NAOS Method
3.4
Local Oxidation Nanolithography
3.4.1
AFM Oxidation Mechanism and Kinetics
3.4.2
Empirical Models for LON
3.4.2.1
Surface Charge Density Distribution for a Hemispherical Needle Tip
3.4.2.2
Surface Charge Density Distribution for a Rough Needle Tip
3.4.2.3
Model for scanning tunneling microscope lithography
3.4.2.4
Model for contact mode lithography
3.4.2.5
Model for intermittent contact mode lithography
3.4.2.6
Model for nanodots generated in NCM
3.4.2.7
Model for nanowires generated in NCM
3.4.3
Nanodot Modeling Using the MC Method
3.4.3.1
Gaussian Particle Distribution
3.4.3.2
Lorentzian Particle Distribution
3.4.3.3
One-Dimensional Surface Charge Density Particle Distribution
3.4.3.4
Two-Dimensional Surface Charge Density Particle Distribution
3.4.3.5
Modeling Nanodots with Additional Point Charges
Next:
3.1 Thermal Oxidation Simulators
Up:
Dissertation L. Filipovic
Previous:
2.4.3 Atomic Force Microscope
L. Filipovic: Topography Simulation of Novel Processing Techniques