Next:
List of Figures
Up:
Dissertation L. Filipovic
Previous:
Acknowledgment
Contents
List of Figures
List of Tables
List of Abbreviations
List of Symbols
1.
Introduction
1.1
Traditional Semiconductor Process Technologies
1.1.1
Lithography
1.1.2
Etching
1.1.3
Deposition
1.1.4
Chemical Mechanical Planarization
1.1.5
Oxidation
1.1.6
Ion Implantation
1.1.7
Diffusion
1.2
Approaches to Semiconductor Modeling
1.2.1
Atomistic Approach
1.2.2
Continuum Approach
1.3
Motivation for Novel Processing Techniques
1.4
Simulator Implementation
1.4.1
Fast Level Set Framework
1.4.1.1
Sparse Field Method
1.4.1.2
H-RLE Data Structure
1.4.1.3
Multiple Material Regions
1.4.2
Surface Rate Calculation
1.4.2.1
Transport Kinetics
1.4.2.2
Surface Kinetics
1.5
Outline of the Thesis
2.
Silicon Oxidation Techniques
2.1
Silicon Dioxide Properties
2.1.1
Molecular Structure of the Silicon-Silicon Dioxide Interface
2.2
Thermal Oxidation of Silicon
2.2.1
Kinetics and Growth of Silicon Dioxide
2.2.1.1
Dry Oxidation
2.2.1.2
Wet Oxidation
2.2.1.3
Temperature Effects
2.2.1.4
Pressure Effects
2.2.1.5
Crystal Orientation Effects
2.3
Linear Parabolic Description of Thermal Oxidation Growth
2.3.1
Deal-Grove Model
2.3.1.1
Temperature
2.3.1.2
Hydrostatic Pressure
2.3.1.3
Crystal Orientation
2.3.2
Limitations of the Deal-Grove Model
2.3.3
Massoud Model
2.3.4
Other One-Dimensional Oxide Growth Models
2.4
Local Oxidation Nanolithography
2.4.1
Technology Background
2.4.2
Scanning Tunneling Microscope Lithography
2.4.3
Atomic Force Microscope Lithography
2.4.3.1
Contact Mode Lithography
2.4.3.2
Intermittent Contact Mode Lithography
2.4.3.3
Non-Contact Mode Lithography
3.
Simulating Silicon Oxidation
3.1
Thermal Oxidation Simulators
3.1.1
History of Oxidation Simulators
3.1.2
Visco-Elastic model using FEM
3.1.3
Simulating Oxide Growth using Volume Expansion
3.2
Oxidation Modeling using Linear Parabolic Equations
3.2.1
Multiple moving interfaces
3.2.1.1
One initial LS description
3.2.1.2
LS describes pre-existing native material
3.2.1.3
LS describes existence of a mask layer
3.2.2
Separating Material Interfaces
3.2.3
LS Surface Vector Motion
3.3
Nitric Acid Oxidation
3.3.1
NAOS Modeling
3.3.1.1
Azeotropic NAOS Method
3.3.1.2
Vapor NAOS Method
3.4
Local Oxidation Nanolithography
3.4.1
AFM Oxidation Mechanism and Kinetics
3.4.2
Empirical Models for LON
3.4.2.1
Surface Charge Density Distribution for a Hemispherical Needle Tip
3.4.2.2
Surface Charge Density Distribution for a Rough Needle Tip
3.4.2.3
Model for scanning tunneling microscope lithography
3.4.2.4
Model for contact mode lithography
3.4.2.5
Model for intermittent contact mode lithography
3.4.2.6
Model for nanodots generated in NCM
3.4.2.7
Model for nanowires generated in NCM
3.4.3
Nanodot Modeling Using the MC Method
3.4.3.1
Gaussian Particle Distribution
3.4.3.2
Lorentzian Particle Distribution
3.4.3.3
One-Dimensional Surface Charge Density Particle Distribution
3.4.3.4
Two-Dimensional Surface Charge Density Particle Distribution
3.4.3.5
Modeling Nanodots with Additional Point Charges
4.
Novel Deposition and Etch Techniques
4.1
Spray Pyrolysis Deposition
4.1.1
Technology Background
4.1.2
Atomization Procedure
4.1.3
Aerosol Transport of Droplets
4.1.3.1
Gravitational force
4.1.3.2
Electrical force
4.1.3.3
Stokes force
4.1.3.4
Thermophoretic force
4.1.4
Precursor Decomposition
4.1.4.1
Process A: low temperature - large initial droplet
4.1.4.2
Process B: lower/intermediate temperature - larger/medium droplet size
4.1.4.3
Process C: intermediate/higher temperature - medium/smaller droplet size
4.1.4.4
Process D: high temperature - small droplet size
4.2
Bit Cost Scalable Memory Holes
4.2.1
Technology Background
4.2.2
Etching of Silicon Dioxide
4.2.3
Etching of Silicon
5.
Simulating Deposition and Etch Processes
5.1
Spray Pyrolysis Deposition Modeling
5.1.1
Modeling Droplet Atomization
5.1.2
Modeling Droplet Transport
5.1.2.1
Droplet transport using gravity and Stokes forces
5.1.2.2
Droplet transport inside the heat zone
5.1.2.3
Droplet transport including the electrical force
5.1.3
Modeling Interaction between Droplet and Wafer Surface
5.1.3.1
Deposition Model
5.2
Modeling BiCS Memory Hole Etching
5.2.1
Carbon Fluorides for Silicon Dioxide Etching
5.2.2
Halogen Gas for Silicon Etching
6.
Applications
6.1
Silicon Oxidation
6.1.1
Oxide Growth without Native Oxide
6.1.2
Oxide Growth with Native Oxide Present
6.1.3
Oxidation with Orientation effects
6.1.4
Oxidation with LOCOS
6.2
Nitric Acid Oxidation
6.3
Atomic Force Microscope Lithography
6.3.1
AFM Nanodot Generation
6.3.2
AFM Nanowire Generation
6.3.3
High Density Data Storage using AFM
6.3.4
Silicon Nanowire Transistor
6.4
Spray Pyrolysis Deposition
6.4.1
YSZ Deposition using ESD Pyrolysis
6.4.2
Tin Oxide Deposition using PSD Pyrolysis
6.5
BiCS Memory Hole Etching
7.
Summary and Outlook
A. Droplet Transport Equations for Spray Pyrolysis Modeling
A.1
Transport under a Velocity-Dependent Acceleration
A.2
Transport under a Velocity- and Displacement-Dependent Acceleration
B. Generating a Distribution for the Droplet Radius
Bibliography
List of Publications
Curriculum Vitae
Next:
List of Figures
Up:
Dissertation L. Filipovic
Previous:
Acknowledgment
L. Filipovic: Topography Simulation of Novel Processing Techniques