A. The FOWLER-NORDHEIM Formula

The TSU-ESAKI expression (3.12) for the tunnel current density reads

$\displaystyle J=\frac{4 \pi \ensuremath {\mathrm{q}}\ensuremath{m_\mathrm{eff}}...
...}) -f_2({\mathcal{E}})\right) \, \ensuremath {\mathrm{d}}{\mathcal{E}}_\rho \ ,$ (A.1)

where the total energy is split into a longitudinal and a transversal energy

$\displaystyle {\mathcal{E}}={\mathcal{E}}_{x}+{\mathcal{E}}_{\rho}\ .$ (A.2)

The goal is to find a simple approximation of (A.1) which avoids numerical integration. As a first approximation, $ T \to 0$ is assumed [96]. This allows to replace the FERMI function $ f(x)$ by the step function

\begin{displaymath}\begin{array}{l} f_1({\mathcal{E}}) = f({\mathcal{E}}-\ensure...
...{{\mathcal{E}}_\mathrm{f,2}}\end{array} \right. \ . \end{array}\end{displaymath} (A.3)

Without loss of generality it can be assumed that $ \ensuremath{{\mathcal{E}}_\mathrm{f,1}} > \ensuremath{{\mathcal{E}}_\mathrm{f,2}}$ (see Fig. A.1). The innermost integral can then be evaluated analytically for three distinct regions

\begin{displaymath}\begin{array}{rclcl} \displaystyle \int_0^\infty \left( f({\m...
...{E}}_x > \ensuremath{{\mathcal{E}}_\mathrm{f,1}}\ . \end{array}\end{displaymath} (A.4)

This leads to the following expression for the current density:

$\displaystyle J=\frac{4\pi \ensuremath {\mathrm{q}}\ensuremath{m_\mathrm{eff}}}...
...m{f,1}}- {\mathcal{E}}_x) \,\ensuremath {\mathrm{d}}{\mathcal{E}}_x \right) \ .$ (A.5)

The left integral represents tunneling current from electron states that are low in energy and face a high energy barrier. Hence, as a second approximation, the left integral is neglected. Still it is necessary to insert an expression for the transmission coefficient in the right integral. For a single-layer dielectric, two shapes are possible: triangular and trapezoidal. First, the formula will be derived assuming a triangular shape.

Figure A.1: Energy barrier in the FOWLER-NORDHEIM tunneling (left) and direct tunneling (right) regime.
\includegraphics[width=.8\linewidth]{figures/barrierFnDirect}


Subsections

A. Gehring: Simulation of Tunneling in Semiconductor Devices