[1] International Energy Agency. Key World Energy Statistics 2017. 2017.
[2] D. Ueda. “Properties and Advantages of Gallium Nitride”. In: Power GaN Devices: Materials, Applications and Reliability. Ed. by M. Meneghini, G. Meneghesso, and E. Zanoni. Springer International Publishing, 2017, pp. 1–26. doi: 10.1007/978-3-319-43199-4_1.
[3] B. J. Baliga. “Semiconductors for high-voltage, vertical channel field-effect transistors”. In: Journal of Applied Physics 53.3 (1982), pp. 1759–1764. doi: 10.1063/1.331646.
[4] B. J. Baliga. Fundamentals of Power Semiconductor Devices. Boston, MA: Springer US, 2008. doi: 10.1007/978-0-387-47314-7.
[5] E. Johnson. “Physical limitations on frequency and power parameters of transistors”. In: 1958 IRE International Convention Record. Vol. 13. 1965, pp. 27–34. doi: 10.1109/IRECON.1965.1147520.
[6] P. W. Lagger. “Physics and characterization of the gate stack in gallium nitride based MIS-HEMTs”. PhD thesis. Institut for Solid State Electronics, TU Wien, 2014.
[7] H. Morkoç Handbook of Nitride Semiconductors and Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2008. doi: 10.1002/9783527628438.
[8] R. Quay. Gallium Nitride Electronics. Vol. 96. Springer Series in Materials Science. Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-71892-5.
[9] T. P. Chow, I. Omura, M. Higashiwaki, H. Kawarada, and V. Pala. “Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors”. In: IEEE Transactions on Electron Devices 64.3 (2017), pp. 856–873. doi: 10.1109/TED.2017.2653759.
[10] O. Ambacher. “Growth and applications of Group III-nitrides”. In: Journal of Physics D: Applied Physics 31.20 (1998), p. 2653.
[11] S. Keller. “Substrates and Materials”. In: Power GaN Devices: Materials, Applications and Reliability. Ed. by M. Meneghini, G. Meneghesso, and E. Zanoni. Springer International Publishing, 2017, pp. 27–52. doi: 10.1007/978-3-319-43199-4_2.
[12] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, and J. Scanlon. “Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon”. In: Applied Physics Letters 59.8 (1991), pp. 944–946. doi: 10.1063/1.106309.
[13] M. J. Paisley, Z. Sitar, J. B. Posthill, and R. F. Davis. “Growth of cubic phase gallium nitride by modified molecular-beam epitaxy”. In: Journal of Vacuum Science & Technology A 7.3 (1989), pp. 701–705. doi: 10.1116/1.575869.
[14] M. Mizuta, S. Fujieda, Y. Matsumoto, and T. Kawamura. “Low Temperature Growth of GaN and AlN on GaAs Utilizing Metalorganics and Hydrazine”. In: Japanese Journal of Applied Physics 25.Part 2, No. 12 (1986), pp. L945–L948. doi: 10.1143/JJAP.25.L945.
[15] Solid State. https://de.wikipedia.org/wiki/Wurtzit. 2008.
[16] N.-Q. Zhang, B. Moran, S. DenBaars, U. Mishra, X. Wang, and T. Ma. “Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs”. In: International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). IEEE, 2001, pp. 25.5.1–25.5.4. doi: 10.1109/IEDM.2001.979575.
[17] A. Krost and A. Dadgar. “GaN-based optoelectronics on silicon substrates”. In: Materials Science and Engineering: B 93.1-3 (2002), pp. 77–84. doi: 10.1016/S0921-5107(02)00043-0.
[18] A. Dadgar, C. Hums, A. Diez, F. Schulze, J. Bläsing, and A. Krost. “Epitaxy of GaN LEDs on large substrates: Si or sapphire?” In: Proc. SPIE 6355, Advanced LEDs for Solid State Lighting. Ed. by C.-H. Hong, T. Taguchi, J. Han, and L. Chen. 2006, 63550R. doi: 10.1117/12.691576.
[19] J. J. Xu, Y.-F. Wu, S. Keller, S. Heikman, B. J. Thibeault, U. K. Mishra, and R. A. York. “1 - 8-GHz GaN-based power amplifier using flip-chip bonding”. In: IEEE Microwave and Guided Wave Letters 9.7 (1999), pp. 277–279. doi: 10.1109/75.774146.
[20] T. Paskova and K. R. Evans. “GaN Substrates - Progress, Status, and Prospects”. In: IEEE Journal of Selected Topics in Quantum Electronics 15.4 (2009), pp. 1041–1052. doi: 10.1109/JSTQE.2009.2015057.
[22] S. Vitanov. “Simulation of high electron mobility transistors”. PhD thesis. Institute for Microelektronics, TU Wien, 2010.
[23] W. Soluch, E. Brzozowski, M. Lysakowska, and J. Sadura. “Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58.11 (2011), pp. 2469–2474. doi: 10.1109/TUFFC.2011.2103.
[24] D. M. Caughey and R. E. Thomas. “Carrier mobilities in silicon empirically related to doping and field”. In: Proceedings of the IEEE 55.12 (1967), pp. 2192–2193. doi: 10.1109/PROC.1967.6123.
[25] F. Schwierz. “An electron mobility model for wurtzite GaN”. In: Solid-State Electronics 49.6 (2005), pp. 889–895. doi: 10.1016/j.sse.2005.03.006.
[26] V. Palankovski. “Simulation of Heterojunction Bipolar Transistors”. PhD thesis. Institute for Microelektronics, TU Wien, 2000.
[27] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman. “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures”. In: Journal of Physics: Condensed Matter 14.13 (2002), p. 3399.
[28] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini. “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory”. In: Physical Review B - Condensed Matter and Materials Physics 64.4 (2001), pp. 1–6. doi: 10.1103/PhysRevB.64.045208.
[29] S. F. Chichibu and S. Nakamura. Introduction to nitride semiconductor blue lasers and light emitting diodes. CRC Press, 2014.
[30] M. A. Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olson. “High electron mobility GaN/Alx Ga1−x N heterostructures grown by low-pressure metalorganic chemical vapor deposition”. In: Applied Physics Letters 58.21 (1991), pp. 2408–2410. doi: 10.1063/1.104886.
[31] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson. “High electron mobility transistor based on a GaN-Alx Ga1−x N heterojunction”. In: Applied Physics Letters 63.9 (1993), pp. 1214–1215. doi: 10.1063/1.109775.
[32] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra. “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors”. In: Applied Physics Letters 77.2 (2000), pp. 250–252. doi: 10.1063/1.126940.
[33] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck. “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”. In: Journal of Applied Physics 85.6 (1999), pp. 3222–3233. doi: 10.1063/1.369664.
[34] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur. “Microwave performance of a 0.25 µm gate AlGaN/GaN heterostructure field effect transistor”. In: Applied Physics Letters 65.9 (1994), pp. 1121–1123. doi: 10.1063/1.112116.
[35] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra. “Measured microwave power performance of AlGaN/GaN MODFET”. In: IEEE Electron Device Letters 17.9 (1996), pp. 455–457. doi: 10.1109/55.536291.
[36] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman. “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs”. In: IEEE Electron Device Letters 21.6 (2000), pp. 268–270. doi: 10.1109/55.843146.
[37] A. Vertiatchikh, L. F. Eastman, W. J. Schaff, and I. Prunty. “Effect of surface passivation of AlGaN/GaN heterostructure field-effect transistor”. In: Electronics Letters 38.8 (2002), pp. 388–389. doi: 10.1049/el:20020270.
[38] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer. “Slow transients observed in AlGaN/GaN HFETs: effects of SiNx passivation and UV illumination”. In: IEEE Transactions on Electron Devices 50.4 (2003), pp. 886–893. doi: 10.1109/TED.2003.812489.
[39] Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara. “10-W/mm AlGaN-GaN HFET with a field modulating plate”. In: IEEE Electron Device Letters 24.5 (2003), pp. 289–291. doi: 10.1109/LED.2003.812532.
[40] Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh. “30-W/mm GaN HEMTs by field plate optimization”. In: IEEE Electron Device Letters 25.3 (2004), pp. 117–119. doi: 10.1109/LED.2003.822667.
[41] H. Zhang, E. J. Miller, and E. T. Yu. “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25 Ga0.75 N/GaN grown by molecular-beam epitaxy”. In: Journal of Applied Physics 99.2 (2006), p. 023703. doi: 10.1063/1.2159547.
[42] S. Ganguly, A. Konar, Z. Hu, H. Xing, and D. Jena. “Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors”. In: Applied Physics Letters 101.25 (2012), p. 253519. doi: 10.1063/1.4773244.
[43] M. A. Khan, G. Simin, J. Yang, J. Zhang, A. Koudymov, M. S. Shur, R. Gaska, X. Hu, and A. Tarakji. “Insulating gate III-N heterostructure field-effect transistors for high-power microwave and switching applications”. In: IEEE Transactions on Microwave Theory and Techniques 51.2 (2003), pp. 624–633. doi: 10.1109/TMTT.2002.807681.
[44] R. Stradiotto. “Characterization of Electrically Active Defects at III-N/Dielectric Interfaces”. PhD thesis. Institute for Microelectronics, TU Wien, 2016.
[45] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura. “Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications”. In: IEEE Transactions on Electron Devices 53.2 (2006), pp. 356–362. doi: 10.1109/TED.2005.862708.
[46] T. Oka and T. Nozawa. “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications”. In: IEEE Electron Device Letters 29.7 (2008), pp. 668–670. doi: 10.1109/LED.2008.2000607.
[47] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros. “1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on-Resistance”. In: IEEE Electron Device Letters 32.5 (2011), pp. 632–634. doi: 10.1109/LED.2011.2118190.
[48] C. Liu, S. Yang, S. Liu, Z. Tang, H. Wang, Q. Jiang, and K. J. Chen. “Thermally Stable Enhancement-Mode GaN Metal-Isolator-Semiconductor High-Electron-Mobility Transistor With Partially Recessed Fluorine-Implanted Barrier”. In: IEEE Electron Device Letters 36.4 (2015), pp. 318–320. doi: 10.1109/LED.2015.2403954.
[49] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau. “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment”. In: IEEE Electron Device Letters 26.7 (2005), pp. 435–437. doi: 10.1109/LED.2005.851122.
[50] S. Jia, Y. Cai, D. Wang, B. Zhang, K. M. Lau, and K. J. Chen. “Enhancement-mode AlGaN/GaN HEMTs on silicon substrate”. In: physica status solidi (c) 3.6 (2006), pp. 2368–2372. doi: 10.1002/pssc.200565119.
[51] K. J. Chen and C. Zhou. “Enhancement-mode AlGaN/GaN HEMT and MIS-HEMT technology”. In: physica status solidi (a) 208.2 (2011), pp. 434–438. doi: 10.1002/pssa.201000631.
[52] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda. “Gate Injection Transistor (GIT) - A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation”. In: IEEE Transactions on Electron Devices 54.12 (2007), pp. 3393–3399. doi: 10.1109/TED.2007.908601.
[53] R. Kajitani, K. Tanaka, M. Ogawa, H. Ishida, M. Ishida, and T. Ueda. “Novel high-current density GaN-based normally off transistor with tensile-strained quaternary InAlGaN barrier”. In: Japanese Journal of Applied Physics 54.4S (2015), 04DF09.
[54] L. Romano. Defects in Semiconductors. Elsevier Science, 2015. doi: 10.1016/bs.semsem.2014.11.003.
[55] I. Rossetto, D. Bisi, C. de Santi, A. Stocco, G. Meneghesso, E. Zanoni, and M. Meneghini. “Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities”. In: Power GaN Devices: Materials, Applications and Reliability. Ed. by M. Meneghini, G. Meneghesso, and E. Zanoni. Springer International Publishing, 2017, pp. 197–236. doi: 10.1007/978-3-319-43199-4_9.
[56] T. Zhu and R. A. Oliver. “Unintentional doping in GaN”. In: Physical Chemistry Chemical Physics 14.27 (2012), p. 9558. doi: 10.1039/c2cp40998d.
[57] Z. Xie, Y. Sui, J. Buckeridge, C. R. A. Catlow, T. W. Keal, P. Sherwood, M. R. Farrow, D. O. Scanlon, S. M. Woodley, and A. A. Sokol. “Donor and Acceptor Characteristics of Native Point Defects in GaN”. In: arXiv:1803.06273 (2018).
[58] D. V. Lang. “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors”. In: Journal of Applied Physics 45.7 (1974), pp. 3023–3032. doi: 10.1063/1.1663719.
[59] A. M. Armstrong and R. J. Kaplar. “Deep-Level Characterization: Electrical and Optical Methods”. In: Power GaN Devices: Materials, Applications and Reliability. Ed. by M. Meneghini, G. Meneghesso, and E. Zanoni. Springer International Publishing, 2017, pp. 145–163. doi: 10.1007/978-3-319-43199-4_7.
[60] A. Chantre, G. Vincent, and D. Bois. “Deep-level optical spectroscopy in GaAs”. In: Phys. Rev. B 23.10 (1981), pp. 5335–5359. doi: 10.1103/PhysRevB.23.5335.
[61] J. D. McNamara, M. A. Foussekis, A. A. Baski, X. Li, V. Avrutin, H. Morkoç J. H. Leach, T. Paskova, K. Udwary, E. Preble, and M. A. Reshchikov. “Electrical and optical properties of bulk GaN substrates studied by Kelvin probe and photoluminescence”. In: physica status solidi (c) 10.3 (2013), pp. 536–539. doi: 10.1002/pssc.201200662.
[62] A. R. Arehart. “Investigation of electrically active defects in GaN, AlGaN, and AlGaN/GaN high electron mobility transistors”. PhD thesis. Ohio State University, 2009.
[63] A. M. Armstrong. “Investigation of deep level defects in GaN:C, GaN:Mg and pseudomorphic AlGaN/GaN films”. PhD thesis. Ohio State University, 2006.
[64] A. R. Arehart, A. A. Allerman, and S. A. Ringel. “Electrical characterization of n-type Al0.30 Ga0.70 N Schottky diodes”. In: Journal of Applied Physics 109.11 (2011), p. 114506. doi: 10.1063/1.3592284.
[65] C. Ostermaier, P. Lagger, M. Reiner, and D. Pogany. “Review of bias-temperature instabilities at the III-N/dielectric interface”. In: Microelectronics Reliability 82 (2018), pp. 62–83. doi: 10.1016/J.MICROREL.2017.12.039.
[66] P. Lagger, P. Steinschifter, M. Reiner, M. Stadtmüller, G. Denifl, A. Naumann, J. Müller, L. Wilde, J. Sundqvist, D. Pogany, and C. Ostermaier. “Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress”. In: Applied Physics Letters 105.3 (2014), p. 033512. doi: 10.1063/1.4891532.
[67] J. del Alamo and J. Joh. “GaN HEMT reliability”. In: Microelectronics Reliability 49.9-11 (2009), pp. 1200–1206. doi: 10.1016/j.microrel.2009.07.003.
[68] D. Bisi, M. Meneghini, M. Van Hove, D. Marcon, S. Stoffels, T.-L. Wu, S. Decoutere, G. Meneghesso, and E. Zanoni. “Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate”. In: physica status solidi (a) 212.5 (2015), pp. 1122–1129. doi: 10.1002/pssa.201431744.
[69] M. Meneghini, A. Tajalli, P. Moens, A. Banerjee, E. Zanoni, and G. Meneghesso. “Trapping phenomena and degradation mechanisms in GaN-based power HEMTs”. In: Materials Science in Semiconductor Processing 78 (2018), pp. 118–126. doi: 10.1016/J.MSSP.2017.10.009.
[70] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. Mishra, C. Canali, and E. Zanoni. “Surface-Related Drain Current Dispersion Effects in AlGaN-GaN HEMTs”. In: IEEE Transactions on Electron Devices 51.10 (2004), pp. 1554–1561. doi: 10.1109/TED.2004.835025.
[71] J. Joh and J. A. del Alamo. “A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors”. In: IEEE Transactions on Electron Devices 58.1 (2011), pp. 132–140. doi: 10.1109/TED.2010.2087339.
[72] A. Santarelli, R. Cignani, G. P. Gibiino, D. Niessen, P. A. Traverso, C. Florian, D. M. M. P. Schreurs, and F. Filicori. “A Double-Pulse Technique for the Dynamic I/V Characterization of GaN FETs”. In: IEEE Microwave and Wireless Components Letters 24.2 (2014), pp. 132–134. doi: 10.1109/LMWC.2013.2290216.
[73] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, and E. Zanoni. “Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements”. In: IEEE Transactions on Electron Devices 60.10 (2013), pp. 3166–3175. doi: 10.1109/TED.2013.2279021.
[74] G. Meneghesso, M. Meneghini, C. De Santi, M. Ruzzarin, and E. Zanoni. “Positive and negative threshold voltage instabilities in GaN-based transistors”. In: Microelectronics Reliability 80 (2018), pp. 257–265. doi: 10.1016/J.MICROREL.2017.11.004.
[75] P. Lagger, M. Reiner, D. Pogany, and C. Ostermaier. “Comprehensive Study of the Complex Dynamics of Forward Bias-Induced Threshold Voltage Drifts in GaN Based MIS-HEMTs by Stress/Recovery Experiments”. In: IEEE Transactions on Electron Devices 61.4 (2014), pp. 1022–1030. doi: 10.1109/TED.2014.2303853.
[76] C.-Y. Hu and T. Hashizume. “Non-localized trapping effects in AlGaN/GaN heterojunction field-effect transistors subjected to on-state bias stress”. In: Journal of Applied Physics 111.8 (2012), p. 84504. doi: 10.1063/1.4704393.
[77] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni. “Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives”. In: IEEE Transactions on Device and Materials Reliability 8.2 (2008), pp. 332–343. doi: 10.1109/TDMR.2008.923743.
[78] D. Bisi, C. D. Santi, M. Meneghini, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, S. Keller, U. K. Mishra, G. Meneghesso, and E. Zanoni. “Observation of Hot Electron and Impact Ionization in N-Polar GaN MIS-HEMTs”. In: IEEE Electron Device Letters 39.7 (2018), pp. 1007–1010. doi: 10.1109/LED.2018.2835517.
[79] Y. Dong, R. M. Feenstra, and J. E. Northrup. “Oxidized GaN(0001) surfaces studied by scanning tunneling microscopy and spectroscopy and by first-principles theory”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24.4 (2006), pp. 2080–2086. doi: 10.1116/1.2214713.
[80] Y. Dong, R. M. Feenstra, and J. E. Northrup. “Electronic states of oxidized GaN(0001) surfaces”. In: Applied Physics Letters 89.17 (2006), p. 171920. doi: 10.1063/1.2370519.
[81] H. Marchand, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, S. DenBaars, J. S. Speck, and U. K. Mishra. “Atomic force microscopy observation of threading dislocation density reduction in lateral epitaxial overgrowth of gallium nitride by MOCVD”. In: MRS Internet Journal of Nitride Semiconductor Research 3 (1998), e3. doi: 10.1557/S1092578300000752.
[82] M. Jupina and P. Lenahan. “A Spin-Dependent Recombination Study of Radiation-Induced Pb1 Centers at the (001) Si/SiO2 Interface”. In: IEEE Transactions on Nuclear Science 36.6 (1989), pp. 1800–1807. doi: 10.1109/23.45372.
[83] W. E. Carlos, E. R. Glaser, T. A. Kennedy, and S. Nakamura. “Paramagnetic resonance in GaN-based light emitting diodes”. In: Applied Physics Letters 67.16 (1995), pp. 2376–2378. doi: 10.1063/1.114350.
[84] A. Stesmans, B. Nouwen, and V. V. Afanas’ev. “Pb1 interface defect in thermal (100)Si/SiO2 : 29 Si hyperfine interaction”. In: Physical Review B 58.23 (1998), pp. 15801–15809. doi: 10.1103/PhysRevB.58.15801.
[85] W. E. Carlos, J. A. Freitas, M. A. Khan, D. T. Olson, and J. N. Kuznia. “Electron-spin-resonance studies of donors in wurtzite GaN”. In: Phys. Rev. B 48.24 (1993), pp. 17878–17884. doi: 10.1103/PhysRevB.48.17878.
[86] W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. Shluger, and T. Grasser. “Identification of oxide defects in semiconductor devices: A systematic approach linking DFT to rate equations and experimental evidence”. In: Microelectronics Reliability 87 (2018), pp. 286–320. doi: 10.1016/j.microrel.2017.12.021.
[87] A. Kerber and E. Cartier. “Bias Temperature Instability Characterization Methods”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 3–31. doi: 10.1007/978-1-4614-7909-3_1.
[88] G. Rzepa. “Efficient physical modeling of bias temperature instability”. PhD thesis. Institute for Microelectronics, TU Wien, 2018.
[89] B. Ullmann. “Mixed negative bias temperature instability and hot-carrier stress”. PhD thesis. Institute for Microelectronics, TU Wien, 2018.
[90] S. Imam, S. Sabri, and T. Szkopek. “Low-frequency noise and hysteresis in graphene field-effect transistors on oxide”. In: Micro & Nano Letters 5.1 (2010), p. 37. doi: 10.1049/mnl.2009.0052.
[91] K. Chatty, S. Banerjee, T. P. Chow, and R. J. Gutmann. “Hysteresis in transfer characteristics in 4H-SiC depletion/accumulation-mode MOSFETs”. In: IEEE Electron Device Letters 23.6 (2002), pp. 330–332. doi: 10.1109/LED.2002.1004225.
[92] Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller, and T. Grasser. “The role of charge trapping in MoS2 /SiO2 and MoS2 /hBN field-effect transistors”. In: 2D Materials 3.3 (2016), p. 035004. doi: 10.1088/2053-1583/3/3/035004.
[93] M. Capriotti, P. Lagger, C. Fleury, M. Oposich, O. Bethge, C. Ostermaier, G. Strasser, and D. Pogany. “Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states”. In: Journal of Applied Physics 117.2 (2015). doi: 10.1063/1.4905945.
[94] P. Lagger, A. Schiffmann, G. Pobegen, D. Pogany, and C. Ostermaier. “Very fast dynamics of threshold voltage drifts in GaN-based MIS-HEMTs”. In: IEEE Electron Device Letters 34.9 (2013), pp. 1112–1114. doi: 10.1109/LED.2013.2272095.
[95] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume. “Capacitance-Voltage Characteristics of Al2 O3 /AlGaN/GaN Structures and State Density Distribution at Al2 O3 /AlGaN Interface”. In: Japanese Journal of Applied Physics 50.2R (2011), p. 21001.
[96] C. Ostermaier, H.-C. Lee, S.-Y. Hyun, S.-I. Ahn, K.-W. Kim, H.-I. Cho, J.-B. Ha, and J.-H. Lee. “Interface characterization of ALD deposited Al2 O3 on GaN by CV method”. In: physica status solidi (c) 5.6 (2008), pp. 1992–1994. doi: 10.1002/pssc.200778663.
[97] E. H. Nicollian and A. Goetzberger. “The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique”. In: Bell System Technical Journal 46.6 (1967), pp. 1055–1133. doi: 10.1002/j.1538-7305.1967.tb01727.x.
[98] X. Liu, H. C. Chin, L. S. Tan, and Y. C. Yeo. “In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric”. In: IEEE Transactions on Electron Devices 58.1 (2011), pp. 95–102. doi: 10.1109/TED.2010.2084410.
[99] M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Babcock, R. Lindley, P. Clifton, M. Redford, and A. Shibkov. “Dynamic recovery of negative bias temperature instability in p-type metal-oxide-semiconductor field-effect transistors”. In: Applied Physics Letters 83.8 (2003), pp. 1647–1649. doi: 10.1063/1.1604480.
[100] B. Kaczer, T. Grasser, J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan, and G. Groeseneken. “Ubiquitous relaxation in BTI stressing – New evaluation and insights”. In: 2008 IEEE International Reliability Physics Symposium. IEEE, 2008, pp. 20–27. doi: 10.1109/RELPHY.2008.4558858.
[101] H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, and C. Schlunder. “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT-Measurements”. In: 2006 IEEE International Reliability Physics Symposium Proceedings. 2006, pp. 448–453. doi: 10.1109/RELPHY.2006.251260.
[102] M. Waltl. “Characterization of Bias Temperature Instabilities in Modern Transistor Technologies”. PhD thesis. Institute for Microelectronics, TU Wien, 2016.
[103] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tauriac, and N. Revil. “On-the-flycharacterization of NBTI in ultra-tihin gate oxide PMOSFET’s”. In: IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004.. IEEE, 2004, pp. 109–112. doi: 10.1109/IEDM.2004.1419080.
[104] R. Stradiotto, G. Pobegen, C. Ostermaier, and K.-T. Grasser. “On The Fly Characterization of Charge Trapping Phenomena at GaN/Dielectric and GaN/AlGaN/Dielectric Interfaces Using Impedance Measurements”. In: Proceedings of the 45th European Solid State Device Research Conference. 2015, pp. 218–225. doi: 10.1109/ESSDERC.2015.7324754.
[105] T. Grasser, P. J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer. “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 526–535. doi: 10.1109/TDMR.2008.2002353.
[106] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant. “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f) Noise”. In: Phys. Rev. Lett. 52.3 (1984), pp. 228–231. doi: 10.1103/PhysRevLett.52.228.
[107] M. J. Uren, D. J. Day, and M. J. Kirton. “1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors”. In: Applied Physics Letters 47.11 (1985), pp. 1195–1197. doi: 10.1063/1.96325.
[108] M. J. Uren, M. J. Kirton, and S. Collins. “Anomalous telegraph noise in small-area silicon metal-oxide-semiconductor field-effect transistors”. In: Physical Review B 37.14 (1988), pp. 8346–8350. doi: 10.1103/PhysRevB.37.8346.
[109] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel. “Understanding negative bias temperature instability in the context of hole trapping”. In: Microelectronic Engineering 86.7-9 (2009), pp. 1876–1882. doi: 10.1016/j.mee.2009.03.120.
[110] T. Grasser. “Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities”. In: Microelectronics Reliability 52.1 (2012), pp. 39–70. doi: 10.1016/j.microrel.2011.09.002.
[111] C.-Y. Chen, Q. Ran, Hyun-Jin Cho, A. Kerber, Y. Liu, M.-R. Lin, and R. W. Dutton. “Correlation of Id - and Id -Random Telegraph Noise to Positive Bias Temperature Instability in Scaled High-κ/Metal Gate n-type MOSFETs”. In: 2011 International Reliability Physics Symposium. IEEE, 2011, 3A.2.1–3A.2.6. doi: 10.1109/IRPS.2011.5784475.
[112] S. Guo, R. Wang, D. Mao, Y. Wang, and R. Huang. “Anomalous random telegraph noise in nanoscale transistors as direct evidence of two metastable states of oxide traps”. In: Scientific Reports 7.1 (2017), p. 6239. doi: 10.1038/s41598-017-06467-7.
[113] R. Wang, S. Guo, Z. Zhang, J. Zou, D. Mao, and R. Huang. “Complex Random Telegraph Noise (RTN): What Do We Understand?” In: 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2018, pp. 1–7. doi: 10.1109/IPFA.2018.8452514.
[114] A. Karwath and M. Schulz. “Deep level transient spectroscopy on single, isolated interface traps in field-effect transistors”. In: Applied Physics Letters 52.8 (1988), pp. 634–636. doi: 10.1063/1.99388.
[115] H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder. “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress”. In: 2010 IEEE International Reliability Physics Symposium. 2010, pp. 7–15. doi: 10.1109/IRPS.2010.5488858.
[116] T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer. “The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability”. In: 2010 IEEE International Reliability Physics Symposium. Vol. 1835. IEEE, 2010, pp. 16–25. doi: 10.1109/IRPS.2010.5488859.
[117] H. Reisinger. “The Time-Dependent Defect Spectroscopy”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 75–109. doi: 10.1007/978-1-4614-7909-3_4.
[118] T. Grasser. “The Capture/Emission Time Map Approach to the Bias Temperature Instability”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 447–481. doi: 10.1007/978-1-4614-7909-3_17.
[119] H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin, and C. Schlünder. “Understanding and modeling AC BTI”. In: 2011 International Reliability Physics Symposium. 2011, 6A.1.1–6A.1.8. doi: 10.1109/IRPS.2011.5784542.
[120] C. H. Henry and D. V. Lang. “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP”. In: Phys. Rev. B 15.2 (1977), pp. 989–1016. doi: 10.1103/PhysRevB.15.989.
[121] P. T. Landsberg. “Non-Radiative Transitions in Semiconductors”. In: physica status solidi (b) 41.2 (1970), pp. 457–489. doi: 10.1002/pssb.19700410202.
[122] D. V. Lang and C. H. Henry. “Nonradiative Recombination at Deep Levels in GaAs and GaP by Lattice-Relaxation Multiphonon Emission”. In: Phys. Rev. Lett. 35.22 (1975), pp. 1525–1528. doi: 10.1103/PhysRevLett.35.1525.
[123] A. M. Stoneham. “Non-radiative transitions in semiconductors”. In: Reports on Progress in Physics 44.12 (1981), p. 1251.
[124] S. Makram-Ebeid and M. Lannoo. “Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor”. In: Phys. Rev. B 25.10 (1982), pp. 6406–6424. doi: 10.1103/PhysRevB.25.6406.
[125] T. L. Tewksbury. “Relaxation effects in MOS devices due to tunnel exchange with near-interface oxide traps”. PhD thesis. Massachusetts Institute of Technology, 1992.
[126] T. L. Tewksbury and H.-S. Lee. “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFETs”. In: IEEE Journal of Solid-State Circuits 29.3 (1994), pp. 239–252. doi: 10.1109/4.278345.
[127] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.19273892002.
[128] Y. Wimmer. “Hydrogen Related Defects in Amorphous SiO2 and the Negative Bias Temperature Instability”. PhD thesis. Institute for Microelectronics, TU Wien, 2017.
[129] E. Condon. “A Theory of Intensity Distribution in Band Systems”. In: Phys. Rev. 28.6 (1926), pp. 1182–1201. doi: 10.1103/PhysRev.28.1182.
[130] K. Huang and A. Rhys. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 204.1078 (1950), pp. 406–423. doi: 10.1098/rspa.1950.0184.
[131] M. B. Weissman. “1/ f noise and other slow, nonexponential kinetics in condensed matter”. In: Rev. Mod. Phys. 60.2 (1988), pp. 537–571. doi: 10.1103/RevModPhys.60.537.
[132] J. P. Campbell, J. Qin, K. P. Cheung, L. C. Yu, J. S. Suehle, A. Oates, and K. Sheng. “Random telegraph noise in highly scaled nMOSFETs”. In: 2009 IEEE International Reliability Physics Symposium. 2009, pp. 382–388. doi: 10.1109/IRPS.2009.5173283.
[133] T. Nagumo, K. Takeuchi, T. Hase, and Y. Hayashi. “Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps”. In: 2010 International Electron Devices Meeting. IEEE, 2010, pp. 28.3.1–28.3.4. doi: 10.1109/IEDM.2010.5703437.
[134] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel. “A two-stage model for negative bias temperature instability”. In: 2009 IEEE International Reliability Physics Symposium. 2009, pp. 33–44. doi: 10.1109/IRPS.2009.5173221.
[135] G. Rzepa, W. Goes, G. Rott, K. Rott, M. Karner, C. Kernstock, B. Kaczer, H. Reisinger, and T. Grasser. “Physical modeling of NBTI: From individual defects to devices”. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices. 2014, pp. 81–84. doi: 10.1109/SISPAD.2014.6931568.
[136] G. Rzepa, M. Waltl, W. Goes, B. Kaczer, and T. Grasser. “Microscopic oxide defects causing BTI, RTN, and SILC on high-k FinFETs”. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices. IEEE. IEEE, 2015, pp. 144–147. doi: 10.1109/SISPAD.2015.7292279.
[137] Y. Y. Illarionov, M. Waltl, G. Rzepa, J.-S. Kim, S. Kim, A. Dodabalapur, D. Akinwande, and T. Grasser. “Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors”. In: ACS Nano 10.10 (2016), pp. 9543–9549. doi: 10.1021/acsnano.6b04814.
[138] Y. Y. Illarionov, T. Knobloch, M. Waltl, G. Rzepa, A. Pospischil, D. K. Polyushkin, M. M. Furchi, T. Mueller, and T. Grasser. “Energetic mapping of oxide traps in MoS2 field-effect transistors”. In: 2D Materials 4.2 (2017), p. 025108. doi: 10.1088/2053-1583/aa734a.
[139] T. Knobloch, G. Rzepa, Y. Y. Illarionov, M. Waltl, D. Polyushkin, A. Pospischil, M. Furchi, T. Mueller, and T. Grasser. “Impact of Gate Dielectrics on the Threshold Voltage in MoS2 Transistors”. In: ECS Transactions 80.1 (2017), pp. 203–217. doi: 10.1149/08001.0203ecst.
[140] L. Landau and E. Lifshitz. Quantum Mechanics. Addison-Wesley, 1958.
[141] R. H. Fowler and L. Nordheim. “Electron emission in intense electric fields”. In: Proc. R. Soc. Lond. A 119.781 (1928), pp. 173–181.
[142] W. Gös. “Hole Trapping and the Negative Bias Temperature Instability”. PhD thesis. Institute for Microelectronics, TU Wien, 2011.
[143] S. E. Rauch. “Review and Reexamination of Reliability Effects Related to NBTI-Induced Statistical Variations”. In: IEEE Transactions on Device and Materials Reliability 7.4 (2007), pp. 524–530. doi: 10.1109/TDMR.2007.910437.
[144] B. Kaczer, T. Grasser, P. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger. “Origin of NBTI variability in deeply scaled pFETs”. In: 2010 IEEE International Reliability Physics Symposium. IEEE, 2010, pp. 26–32. doi: 10.1109/IRPS.2010.5488856.
[145] J. M. M. de Nijs, K. G. Druijf, V. V. Afanas’ev, E. van der Drift, and P. Balk. “Hydrogen induced donor-type Si/SiO2 interface states”. In: Applied Physics Letters 65.19 (1994), pp. 2428–2430. doi: 10.1063/1.112696.
[146] A. Stesmans and V. V. Afanas’ev. “13 - ESR of interfaces and nanolayers in semiconductor heterostructures”. In: Characterization of Semiconductor Heterostructures and Nanostructures. Ed. by C. Lamberti. Elsevier, 2008, pp. 435–482. doi: 10.1016/B978-0-444-53099-8.00013-0.
[147] T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, and B. Kaczer. “Gate-sided hydrogen release as the origin of "permanent" NBTI degradation: From single defects to lifetimes”. In: 2015 IEEE International Electron Devices Meeting. 2015, pp. 20.1.1–20.1.4. doi: 10.1109/IEDM.2015.7409739.
[148] M. Herrmann and A. Schenk. “Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: Measurements and modeling”. In: Journal of Applied Physics 77.9 (1995), pp. 4522–4540. doi: 10.1063/1.359414.
[149] L. Larcher. “Statistical simulation of leakage currents in MOS and flash memory devices with a new multiphonon trap-assisted tunneling model”. In: IEEE Transactions on Electron Devices 50.5 (2003), pp. 1246–1253. doi: 10.1109/TED.2003.813236.
[150] A. Padovani, L. Larcher, S. Verma, P. Pavan, P. Majhi, P. Kapur, K. Parat, 5. Bersuker, and K. Saraswat. “Statistical Modeling of Leakage Currents Through SiO2 /High-κ Dielectrics Stacks for Non-Volatile Memory Applications”. In: 2008 IEEE International Reliability Physics Symposium. 2008, pp. 616–620. doi: 10.1109/RELPHY.2008.4558955.
[151] L. Vandelli, A. Padovani, L. Larcher, R. G. Southwick, W. B. Knowlton, and G. Bersuker. “A Physical Model of the Temperature Dependence of the Current Through SiO2 /HfO2 Stacks”. In: IEEE Transactions on Electron Devices 58.9 (2011), pp. 2878–2887. doi: 10.1109/TED.2011.2158825.
[152] J. Frenkel. “On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors”. In: Physical Review 54.8 (1938), pp. 647–648. doi: 10.1103/PhysRev.54.647.
[153] D. T. Gillespie. Markov processes : an introduction for physical scientists. Academic Press, 1992, p. 565.
[154] O. C. Ibe. Markov processes for stochastic modeling. Elsevier, 2013, p. 493.
[155] D. J. Frank and H. Miki. “Analysis of Oxide Traps in Nanoscale MOSFETs using Random Telegraph Noise”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 111–134. doi: 10.1007/978-1-4614-7909-3_5.
[156] Z. Jibin, W. Runsheng, G. Shaofeng, L. Mulong, Y. Zhuoqing, J. Xiaobo, R. Pengpeng, W. Jianping, L. Jinhua, W. Jingang, W. Waisum, Y. Shaofeng, W. Hanming, L. Shiuh-Wuu, W. Yangyuan, and H. Ru. “New understanding of state-loss in complex RTN: Statistical experimental study, trap interaction models, and impact on circuits”. In: 2014 IEEE International Electron Devices Meeting. IEEE, 2014, pp. 34.5.1–34.5.4. doi: 10.1109/IEDM.2014.7047169.
[157] L. Gerrer, J. Ding, S. Amoroso, F. Adamu-Lema, R. Hussin, D. Reid, C. Millar, and A. Asenov. “Modelling RTN and BTI in nanoscale MOSFETs from device to circuit: A review”. In: Microelectronics Reliability 54.4 (2014), pp. 682–697. doi: 10.1016/j.microrel.2014.01.024.
[158] M. Huymajer. “Cluster Detection Algorithm to Study Single Charge Trapping Events in TDDS”. Master Thesis. Institute for Microelectronics, TU Wien, 2017.
[159] T. Nagumo, K. Takeuchi, S. Yokogawa, K. Imai, and Y. Hayashi. “New analysis methods for comprehensive understanding of Random Telegraph Noise”. In: 2009 IEEE International Electron Devices Meeting. IEEE, 2009, pp. 1–4. doi: 10.1109/IEDM.2009.5424230.
[160] Y. Yuzhelevski, M. Yuzhelevski, and G. Jung. “Random telegraph noise analysis in time domain”. In: Review of Scientific Instruments 71.4 (2000), pp. 1681–1688. doi: 10.1063/1.1150519.
[161] A. K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern Recognition Letters 31.8 (2010), pp. 651–666. doi: 10.1016/j.patrec.2009.09.011.
[162] T. Obara, A. Teramoto, A. Yonezawa, R. Kuroda, S. Sugawa, and T. Ohmi. “Analyzing correlation between multiple traps in RTN characteristics”. In: 2014 IEEE International Reliability Physics Symposium. IEEE, 2014, 4A.6.1–4A.6.7. doi: 10.1109/IRPS.2014.6860644.
[163] M. Maestro, J. Diaz, A. Crespo-Yepes, M. Gonzalez, J. Martin-Martinez, R. Rodriguez, M. Nafria, F. Campabadal, and X. Aymerich. “New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM”. In: Solid-State Electronics 115 (2016), pp. 140–145. doi: 10.1016/j.sse.2015.08.010.
[164] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. “Time-dependent defect spectroscopy for characterization of border traps in metal-oxide-semiconductor transistors”. In: Physical Review B 82.24 (2010), p. 245318. doi: 10.1103/PhysRevB.82.245318.
[165] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–698. doi: 10.1109/TPAMI.1986.4767851.
[166] H. Steinhaus. “Sur la division des corp materiels en parties”. In: Bull. Acad. Polon. Sci 1.804 (1956), p. 801.
[167] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.
[168] G. H. Ball and D. J. Hall. ISODATA, a novel method of data analysis and pattern classification. Tech. rep. Stanford research inst Menlo Park CA, 1965.
[169] J. MacQueen et al. “Some methods for classification and analysis of multivariate observations”. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.
[170] L. E. Baum and T. Petrie. “Statistical Inference for Probabilistic Functions of Finite State Markov Chains”. In: The Annals of Mathematical Statistics 37.6 (1966), pp. 1554–1563. doi: 10.1214/aoms/1177699147.
[171] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. “A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov”. In: The Annals of Mathematical Statistics 41.1 (1970), pp. 164–171.
[172] L. Rabiner. “A tutorial on hidden Markov models and selected applications in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286. doi: 10.1109/5.18626.
[173] M. Stamp. A revealing introduction to hidden Markov models. Tech. rep. 2004, p. 20. doi: 10.1.1.136.137.
[174] F. G.David. “The viterbi algorithm”. In: Proceedings of the IEEE 61.3 (1973), pp. 302–309. doi: 10.1109/PROC.1973.9030.
[175] L. E. Baum. “An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes”. In: Inequalities III: Proceedings of the Third Symposium on Inequalities. Ed. by O. Shisha. University of California, Los Angeles: Academic Press, 1972, pp. 1–8.
[176] G. Rodriguez. Smoothing and Non-Parametric Regression. Tech. rep. 2001, p. 12.
[177] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, 1993.
[178] W. S. Cleveland. “Robust Locally Weighted Regression and Smoothing Scatterplots”. In: Journal of the American Statistical Association 74.368 (1979), pp. 829–836.
[179] W. S. Cleveland and S. J. Devlin. “Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting”. In: Source Journal of the American Statistical Association 83.403 (1988), pp. 596–610.
[180] C. J. Vogel. A faster version of the lowess function in statsmodels.nonparametric.lowess. 2012.
[181] C. D. Boor. “Splines as linear combinations of B-splines. A Survey”. In: Approximation Theory Conference. 1976, pp. 1–47. doi: 10.1.1.34.8204.
[182] P. Dierckx. “An algorithm for smoothing, differentiation and integration of experimental data using spline functions”. In: Journal of Computational and Applied Mathematics 1.3 (1975), pp. 165–184. doi: 10.1016/0771-050X(75)90034-0.
[183] P. Dierckx. “A Fast Algorithm for Smoothing Data on a Rectangular Grid While Using Spline Functions”. In: SIAM Journal on Numerical Analysis 19.6 (1982), pp. 1286–1304.
[184] S.-J. Baek, A. Park, Y.-J. Ahn, and J. Choo. “Baseline correction using asymmetrically reweighted penalized least squares smoothing”. In: The Analyst 140.1 (2015), pp. 250–257. doi: 10.1039/C4AN01061B.
[185] P. H. C. Eilers. “A Perfect Smoother”. In: Analytical Chemistry 75.14 (2003), pp. 3631–3636. doi: 10.1021/ac034173t.
[186] P. H. C. Eilers and H. F. M. Boelens. “Baseline correction with asymmetric least squares smoothing”. In: Leiden University Medical Centre Report 1.1 (2005), p. 5.
[187] Z.-M. Zhang, S. Chen, and Y.-Z. Liang. “Baseline correction using adaptive iteratively reweighted penalized least squares”. In: The Analyst 135.5 (2010), p. 1138. doi: 10.1039/b922045c.
[188] S. M. Ross. Introduction to probability and statistics for engineers and scientists. Elsevier, 2009.
[189] T. Imada, M. Kanamura, and T. Kikkawa. “Enhancement-mode GaN MIS-HEMTs for power supplies”. In: The 2010 International Power Electronics Conference. IEEE, 2010, pp. 1027–1033. doi: 10.1109/IPEC.2010.5542039.
[190] P. Lagger, C. Ostermaier, G. Pobegen, and D. Pogany. “Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs”. In: 2012 International Electron Devices Meeting. IEEE, 2012, pp. 13.1.1–13.1.4. doi: 10.1109/IEDM.2012.6479033.
[191] P. Lagger, C. Ostermaier, and D. Pogany. “Enhancement of Vth drift for repetitive gate stress pulses due to charge feedback effect in GaN MIS-HEMTs”. In: 2014 IEEE International Reliability Physics Symposium. IEEE, 2014, pp. 6C.3.1–6C.3.6. doi: 10.1109/IRPS.2014.6861110.
[192] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann. “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”. In: Journal of Applied Physics 87.1 (2000), pp. 334–344. doi: 10.1063/1.371866.
[193] T. Simlinger. “Simulation von Heterostruktur-Feldeffekttransistoren”. PhD thesis. Institute for Microelektronics, TU Wien, 1996.
[194] B. S. Eller, J. Yang, and R. J. Nemanich. “Electronic surface and dielectric interface states on GaN and AlGaN”. In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31.5 (2013), p. 050807. doi: 10.1116/1.4807904.
[195] T. Grasser, P.-J. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer. “Analytic modeling of the bias temperature instability using capture/emission time maps”. In: 2011 International Electron Devices Meeting. IEEE, 2011, pp. 27.4.1–27.4.4. doi: 10.1109/IEDM.2011.6131624.
[196] K.-S. Im, H.-S. Kang, J.-H. Lee, S.-J. Chang, S. Cristoloveanu, M. Bawedin, and J.-H. Lee. “Characteristics of GaN and AlGaN/GaN FinFETs”. In: Solid-State Electronics 97 (2014), pp. 66–75. doi: 10.1016/j.sse.2014.04.033.
[197] M. Reiner, G. Denifl, M. Stadtmueller, R. Pietschnig, and C. Ostermaier. “Through-layer XPS investigations of the Si3 N4 /AlGaN interface”. In: physica status solidi (b) 253.10 (2016), pp. 2009–2014. doi: 10.1002/pssb.201600143.
[198] L. C. Grabow, J. J. Uhlrich, T. F. Kuech, and M. Mavrikakis. “Effectiveness of in situ NH3 3 annealing treatments for the removal of oxygen from GaN surfaces”. In: Surface Science 603.2 (2009), pp. 387–399. doi: 10.1016/j.susc.2008.11.029.
[199] M. Reiner, P. Lagger, G. Prechtl, P. Steinschifter, R. Pietschnig, D. Pogany, and C. Ostermaier. “Modification of "native" surface donor states in AlGaN/GaN MIS-HEMTs by fluorination: Perspective for defect engineering”. In: 2015 IEEE International Electron Devices Meeting. 2015, pp. 35.5.1–35.5.4. doi: 10.1109/IEDM.2015.7409834.
[200] M. Reiner, J. Schellander, G. Denifl, M. Stadtmueller, M. Schmid, T. Frischmuth, U. Schmid, R. Pietschnig, and C. Ostermaier. “Physical-chemical stability of fluorinated III-N surfaces: Towards the understanding of the (0001) Alx Ga1−x N surface donor modification by fluorination”. In: Journal of Applied Physics 121.22 (2017), p. 225704. doi: 10.1063/1.4985345.
[201] D. Hisamoto, T. Kaga, and E. Takeda. “Impact of the vertical SOI ’DELTA’ structure on planar device technology”. In: IEEE Transactions on Electron Devices 38.6 (1991), pp. 1419–1424. doi: 10.1109/16.81634.
[202] Chenming Hu, J. Bokor, Tsu-Jae King, E. Anderson, C. Kuo, K. Asano, H. Takeuchi, J. Kedzierski, Wen-Chin Lee, and D. Hisamoto. “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm”. In: IEEE Transactions on Electron Devices 47.12 (2000), pp. 2320–2325. doi: 10.1109/16.887014.
[203] Xuejue Huang, Wen-Chin Lee, C. Kuo, D. Hisamoto, Leland Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Yang-Kyu Choi, K. Asano, V. Subramanian, Tsu-Jae King, J. Bokor, and Chenming Hu. “Sub-50 nm P-channel FinFET”. In: IEEE Transactions on Electron Devices 48.5 (2001), pp. 880–886. doi: 10.1109/16.918235.
[204] M. A. Alsharef, R. Granzner, and F. Schwierz. “Theoretical Investigation of Trigate AlGaN/GaN HEMTs”. In: IEEE Transactions on Electron Devices 60.10 (2013), pp. 3335–3341. doi: 10.1109/TED.2013.2279264.
[205] K.-S. Im, H.-S. Kang, D.-K. Kim, S. Vodapally, Y. Park, J.-H. Lee, Y.-T. Kim, S. Cristoloveanu, and J.-H. Lee. “Temperature-dependent characteristics of AlGaN/GaN FinFETs with sidewall MOS channel”. In: Solid-State Electronics 120 (2016), pp. 47–51. doi: 10.1016/j.sse.2016.03.007.
[206] T. Grasser, K. Rott, H. Reisinger, M. Waltl, and W. Goes. “Evidence for defect pairs in SiON pMOSFETs”. In: Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2014, pp. 258–263. doi: 10.1109/IPFA.2014.6898194.
[207] A.-M. El-Sayed and A. L. Shluger. “Atomistic Modeling of Defects Implicated in the Bias Temperature Instability”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 305–321. doi: 10.1007/978-1-4614-7909-3_12.
[208] H.-P. Komsa, T. T. Rantala, and A. Pasquarello. “Finite-size supercell correction schemes for charged defect calculations”. In: Physical Review B 86.4 (2012), p. 045112. doi: 10.1103/PhysRevB.86.045112.
[209] A. Asenov, R. Balasubramaniam, A. Brown, J. Davies, and S. Saini. “Random telegraph signal amplitudes in sub 100 nm (decanano) MOSFETs: a 3D ’Atomistic’ simulation study”. In: International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138). IEEE, 2000, pp. 279–282. doi: 10.1109/IEDM.2000.904311.
[210] A. Asenov, A. Brown, J. Davies, S. Kaya, and G. Slavcheva. “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs”. In: IEEE Transactions on Electron Devices 50.9 (2003), pp. 1837–1852. doi: 10.1109/TED.2003.815862.
[211] C. Alexander, A. Brown, J. Watling, and A. Asenov. “Impact of scattering in ‘atomistic’ device simulations”. In: Solid-State Electronics 49.5 (2005), pp. 733–739. doi: 10.1016/j.sse.2004.10.012.
[212] M. Schulz. “Coulomb energy of traps in semiconductor space-charge regions”. In: Journal of Applied Physics 74.4 (1993), pp. 2649–2657. doi: 10.1063/1.354656.
[213] M.-P. Lu and M.-J. Chen. “Oxide-trap-enhanced Coulomb energy in a metal-oxide-semiconductor system”. In: Physical Review B 72.23 (2005), p. 235417. doi: 10.1103/PhysRevB.72.235417.
[214] M.-P. Lu. “Coulomb-energy featured capture kinetics in graphene nanoribbon field-effect transistors”. In: Physical Review B 86.4 (2012), p. 045433. doi: 10.1103/PhysRevB.86.045433.
[215] P. Ren, P. Hao, C. Liu, R. Wang, X. Jiang, Y. Qiu, R. Huang, S. Guo, M. Luo, J. Zou, M. Li, J. Wang, J. Wu, J. Liu, W. Bu, W. Wong, S. Yu, H. Wu, S.-W. Lee, and Y. Wang. “New observations on complex RTN in scaled high-κ/metal-gate MOSFETs - The role of defect coupling under DC/AC condition”. In: 2013 IEEE International Electron Devices Meeting. IEEE, 2013, pp. 31.4.1–31.4.4. doi: 10.1109/IEDM.2013.6724731.
[216] A. Asenov, G. Slavcheva, A. Brown, J. Davies, and S. Saini. “Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study”. In: IEEE Transactions on Electron Devices 48.4 (2001), pp. 722–729. doi: 10.1109/16.915703.
[217] M. G. Ancona and G. J. Iafrate. “Quantum correction to the equation of state of an electron gas in a semiconductor”. In: Phys. Rev. B 39.13 (1989), pp. 9536–9540. doi: 10.1103/PhysRevB.39.9536.
[218] A. Wettstein, A. Schenk, and W. Fichtner. “Quantum device-simulation with the density-gradient model on unstructured grids”. In: IEEE Transactions on Electron Devices 48.2 (2001), pp. 279–284. doi: 10.1109/16.902727.
[219] E. Conwell and V. F. Weisskopf. “Theory of Impurity Scattering in Semiconductors”. In: Physical Review 77.3 (1950), pp. 388–390. doi: 10.1103/PhysRev.77.388.
[220] C. Alexander, G. Roy, and A. Asenov. “Random-Dopant-Induced Drain Current Variation in Nano-MOSFETs: A Three-Dimensional Self-Consistent Monte Carlo Simulation Study Using “Ab Initio” Ionized Impurity Scattering”. In: IEEE Transactions on Electron Devices 55.11 (2008), pp. 3251–3258. doi: 10.1109/TED.2008.2004647.
[221] S. M. Amoroso, L. Gerrer, F. Adamu-Lema, S. Markov, and A. Asenov. “Statistical Study of Bias Temperature Instabilities by Means of 3D “Atomistic” Simulation”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 323–348. doi: 10.1007/978-1-4614-7909-3_13.
[222] P. Hao, D. Mao, R. Wang, S. Guo, P. Ren, and R. Huang. “On the frequency dependence of oxide trap coupling in nanoscale MOSFETs: Understanding based on complete 4-state trap model”. In: 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology. IEEE, 2016, pp. 981–983. doi: 10.1109/ICSICT.2016.7998625.
[223] H. Miki, N. Tega, M. Yamaoka, D. J. Frank, A. Bansal, M. Kobayashi, K. Cheng, C. P. D’Emic, Z. Ren, S. Wu, J.-B. Yau, Y. Zhu, M. A. Guillorn, D.-G. Park, W. Haensch, E. Leobandung, and K. Torii. “Statistical measurement of random telegraph noise and its impact in scaled-down high-κ/metal-gate MOSFETs”. In: 2012 International Electron Devices Meeting. IEEE, 2012, pp. 19.1.1–19.1.4. doi: 10.1109/IEDM.2012.6479071.
[224] J. Schreiber. “pomegranate: Fast and Flexible Probabilistic Modeling in Python”. In: The Journal of Machine Learning Research 18.164 (2018), pp. 1–6.