previous up next contents Previous: 3.1 Analytical Method Up: 3.1 Analytical Method Next: 3.1.2 Two-Dimensional Point Response


3.1.1 One-Dimensional Point Response Functions

Generally a point response function can be characterized by a set of parameters which can be expressed by the moments of the function. The first moment is the projected range $ Rp$ defined for the one-dimensional case by

$\displaystyle Rp = \int\limits_{-\infty}^{\infty} x\cdot f(x) \cdot \;dx ,$ (3.3)

while the higher order moments $ m_i$ are defined by

$\displaystyle m_i = \int\limits_{-\infty}^{\infty} (x-Rp)^i\cdot f(x) \cdot \;dx.$ (3.4)

Instead of using the higher moments directly, the point response functions are characterized by modified moments expressed in terms of the straggling $ \sigma$ which is the square root of the second order moment.

$\displaystyle \sigma = \sqrt{m_2}$ (3.5)

$\displaystyle \gamma = \frac{m_3}{\sigma ^3}$ (3.6)

$\displaystyle \beta = \frac{m_4}{\sigma ^4}$ (3.7)

$ \gamma$ and $ \beta$ are called the skewness and the kurtosis, respectively.

The most prominent one-dimensional point response functions are:

Gaussian function:
It is characterized by the projected range $ Rp$ and the straggling $ \sigma$.

$\displaystyle p(x) = \frac{1}{\sigma\cdot\sqrt{2\cdot\pi}}\cdot \exp\left( -\frac{(x-Rp)^2}{2\cdot \sigma ^2}\right)$ (3.8)

$\displaystyle \gamma = 0$ (3.9)

$\displaystyle \beta = 3$ (3.10)



Joined half Gaussian function [27]:
It is a sum of two Gaussian functions which join at a modal projected range. One additional parameter is necessary to characterize this function [71].

$\displaystyle p(x) = \LARGE\left\{ \begin{array}{rl} \sqrt{\frac{2}{(b+c)^2\cdo...
...{2\cdot c^2} \right) & \text{\normalsize for $x \geq a$}\\  \end{array} \right.$ (3.11)

$\displaystyle Rp = a+\sqrt{\frac{2}{\pi}}\cdot(c-b)$ (3.12)

$\displaystyle \sigma = \sqrt{(b^2-b\cdot c+c^2)-\frac{2}{\pi}\cdot (c-b)^2}$ (3.13)

$\displaystyle \gamma = \frac{\sqrt{\frac{2}{\pi}}\cdot (c-b)\cdot \left( \left(...
...t (b^2 + c^2) + \left(3-\frac{8}{\pi}\right) \cdot b \cdot c\right)}{\sigma ^3}$ (3.14)

There is no explicit formula to calculate the parameters $ a$, $ b$ and $ c$ from the moments $ Rp$, $ \sigma$ and $ \gamma$. Therefore iterative numerical solutions of (3.12) - (3.14) have to be performed. Since the joined half Gaussian function contains only three parameters the kurtosis is a function of the other moments. Worth mentioning is that the value of the skewness $ \gamma$ is restricted to [71]

$\displaystyle \vert\gamma \vert < \frac{4-\pi}{\pi-2}\cdot \sqrt{\frac{2}{\pi-2}} \cong 0,99527 .$ (3.15)



Pearson Functions:
These functions are defined as the solution of the differential equation

$\displaystyle \frac{df(y)}{dy} = \frac{(y-a)}{b_0+b_1\cdot y+b_2\cdot y^2}\cdot f(y), \quad y = x - Rp.$ (3.16)

Depending on the values of the parameters $ a$, $ b_0$, $ b_1$ and $ b_2$ different types of solutions are generated, mainly determined by the roots of

$\displaystyle g(y) = b_0+b_1\cdot y+b_2\cdot y^2 .$ (3.17)

The Pearson parameters can be expressed in terms of the moments $ Rp$, $ \sigma$, $ \gamma$ and $ \beta$ which allows a convenient characterization of the different types of Pearson functions [69] [71].

$\displaystyle a = -\frac{\gamma\cdot \sigma \cdot (\beta+3)}{A}$ (3.18)

$\displaystyle b_0 = -\frac{\gamma^2\cdot (4\cdot \beta -3\cdot \gamma^2)}{A}$ (3.19)

$\displaystyle b_1 = a$ (3.20)

$\displaystyle b_2 = -\frac{2\cdot \beta -3\cdot \gamma^2 - 6}{A}$ (3.21)

$\displaystyle A = 10\cdot \beta - 12\cdot \gamma^2 -18$ (3.22)

The Pearson functions can be distinguished by different values of $ \gamma$ and $ \beta$.

$\displaystyle \left. \begin{array}{rcccl} &&\gamma &\neq& 0\\  1+\gamma^2 &<& \beta &<& 3+1.5\cdot \gamma^2 \end{array}\hspace*{1.4cm}\right\}$   Type I (3.23)

$\displaystyle \left. \begin{array}{rcccl} &&\gamma &=& 0\\  &&\beta &<& 3 \end{array} \hspace*{3.1cm}\right\}$   Type II (3.24)

$\displaystyle \left. \begin{array}{rcccl} &&\gamma &\neq& 0\\  &&\beta &=& 3+1.5\cdot \gamma^2 \end{array} \hspace*{1.4cm}\right\}$   Type III (3.25)

$\displaystyle \left. \begin{array}{rcccl} 0 &<& \gamma &<& 32\\  & & \beta &>& ...
... 6\cdot \sqrt{(\gamma^2+4)^3}}{32-\gamma^2} \end{array} \hspace*{0.2cm}\right\}$   Type IV (3.26)

$\displaystyle \left. \begin{array}{rcccl} 0 &<& \gamma &<& 32\\  & & \beta &>& ...
... 6\cdot \sqrt{(\gamma^2+4)^3}}{32-\gamma^2} \end{array} \hspace*{0.2cm}\right\}$   Type V (3.27)

$\displaystyle \left. \begin{array}{rcccl} & & \gamma &\neq& 0\\  3+1.5\cdot \ga...
... 6\cdot \sqrt{(\gamma^2+4)^3}}{32-\gamma^2} \end{array} \hspace*{0.2cm}\right\}$   Type VI (3.28)

$\displaystyle \left. \begin{array}{rcccl} &&\gamma &=& 0\\  &&\beta &>& 3 \end{array} \hspace*{3.2cm}\right\}$   Type VII (3.29)

The solutions of Pearson type I, type III and type VI functions are [38]

\begin{displaymath}\begin{split}\ln(f(y)) = & \frac{1}{2\cdot b_2}\cdot \ln\vert...
...b_1+\sqrt{b_1^2-4\cdot b_0\cdot b_2}} \right\vert . \end{split}\end{displaymath} (3.30)

The Pearson type V function has a solution of

$\displaystyle \ln(f(y)) = \frac{1}{2\cdot b_2}\cdot \ln\vert b_0+b_1\cdot y+b_2\cdot y^2\vert+ \frac{\frac{b_1}{b_2}+2\cdot a}{2\cdot b_2\cdot y+b_1}$ (3.31)

Finally the Pearson type II, type IV and type VII functions are solved by

\begin{displaymath}\begin{split}\ln(f(y)) =& \frac{1}{2\cdot b_2}\cdot \ln\vert ...
...t y+b_1}{\sqrt{4\cdot b_0\cdot b_2-b_1^2}}\right) . \end{split}\end{displaymath} (3.32)

Only bell-shaped solutions are suitable for the definition of a point response function for which reason only the Pearson type II, IV and VII functions can be applied.

Functions with an exponential tail [82]:
These are modeled as a sum of one of the above functions and an exponential tail function.

$\displaystyle p(x) = r\cdot p_a(x) + (1-r)\cdot p_b(x)$ (3.33)

$ p_a(x)$ is one of the above functions, while $ p_b(x)$ is the same function combined with an exponential tail function $ p_T(x)$.

$\displaystyle p_b(x) = \left\{ \begin{array}{rl} k\cdot p_a(x) & \text{for $x <...
...kappa\cdot (k\cdot p_a(x)+p_T(x)) & \text{for $x \geq x_T$} \end{array} \right.$ (3.34)

$\displaystyle p_T(x) = k\cdot p_a(x_p)\cdot \exp\left[-\left( \frac{x-x_p}{L}\right) ^\alpha \right]$ (3.35)

$ L$ and $ \alpha$ determine the shape of the tail, and $ x_T$ is the starting position of the tail function which is set to

$\displaystyle x_T = \left\{ \begin{array}{rl} Rp + \sigma & \text{if $p_a(x)$\ ...
... c & \text{if $p_a(x)$\ is a joined half Gaussian function} \end{array} \right.$ (3.36)

$ x_p$ is the location where the main function has its peak value.

$\displaystyle x_p = \left\{ \begin{array}{rl} Rp & \text{if $p_a(x)$\ is a Gaus...
... a & \text{if $p_a(x)$\ is a joined half Gaussian function} \end{array} \right.$ (3.37)

$ \kappa$ is determined by the condition that $ p_b(x)$ has to be continuous at $ x_T$, while $ k$ ensures a normalized point response function (3.1).

$\displaystyle k\cdot p_a(x_T) = \kappa\cdot (k\cdot p_a(x_T)+p_T(x_T))$ (3.38)

Three additional parameters ($ r$, $ \alpha$ and $ L$) are introduced by this distribution function which are mainly used to model the channeling tail of implantations into crystalline materials.

Dual Pearson functions [62]:
This is a superposition of two Pearson function, similar to functions with an exponential tail. Instead of two parameters five additional parameters are introduced.

$\displaystyle p(x) = r\cdot p_a(x) + (1-r)\cdot p_b(x)$ (3.39)

$ p_a$ and $ p_b$ are independent Pearson functions with an individual set of parameters $ a$, $ b_0$, $ b_1$, $ b_2$, while $ r$ is a proportionality coefficient.

Several parameter sets for various implantation conditions and ions have been published using one of the above analytical functions. Tab. 3.1 summarizes some of these publications.

Figure 3.6: References for parameters for analytical ion implantation.
Targets Ions species Implantation conditions Function type Ref.
amorphous silicon
silicon dioxide
silicon nitride
boron
phosphorus
arsenic
antimony
Energy: 25 keV - 300 keV
Pearson [82]
(100) silicon
antimony
Energy: 30 keV - 180 keV
Dose: $ 4{\cdot}10^{12}$cm$ ^{-2}$ - $ 1{\cdot}10^{15}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$, Rotation: 0 $ \,^\circ\;$
Joined half Gaussian with exponential tail [82]
(100) silicon
boron
BF$ _2$
arsenic
phosphorus
antimony
indium
Energy (boron): 10 keV - 160 keV
Dose (boron): $ 5{\cdot}10^{12}$cm$ ^{-2}$ - $ 5{\cdot}10^{15}$cm$ ^{-2}$
Energy (BF$ _2$): 5 keV - 60 keV
Dose (BF$ _2$): $ 5{\cdot}10^{12}$cm$ ^{-2}$ - $ 5{\cdot}10^{15}$cm$ ^{-2}$
Energy (phosphorus): 30 keV - 180 keV
Dose (phosphorus): $ 1{\cdot}10^{13}$cm$ ^{-2}$ - $ 1{\cdot}10^{16}$cm$ ^{-2}$
Energy (arsenic): 20 keV - 160 keV
Dose (arsenic): $ 5{\cdot}10^{12}$cm$ ^{-2}$ - $ 1{\cdot}10^{15}$cm$ ^{-2}$
Energy (antimony): 10 keV - 180 keV
Dose (antimony): $ 4{\cdot}10^{12}$cm$ ^{-2}$ - $ 1{\cdot}10^{15}$cm$ ^{-2}$
Energy (indium): 30 keV - 180 keV
Dose (indium): $ 4{\cdot}10^{12}$cm$ ^{-2}$ - $ 1{\cdot}10^{15}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$, Rotation: 0 $ \,^\circ\;$
Pearson IV with exponential tail [84]
(100) silicon with
10 nm - 120 nm SiO$ _2$
arsenic
Tilt 0 $ \,^\circ\;$and 7 $ \,^\circ\;$
Joined half Gaussian with exponential tail [83]
(111) silicon
silicon dioxide
silicon nitride
boron
arsenic
Energy (boron): 30 keV - 210 keV
Energy (arsenic): 30 keV - 400 keV
Dose: $ 1{\cdot}10^{15}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$
Pearson [42]
(111) silicon
(100) silicon
boron
Energy: 30 keV - 150 keV
Dose: $ 1{\cdot}10^{13}$cm$ ^{-2}$ - $ 1{\cdot}10^{16}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$
Pearson [70]
(100) gallium-arsenide
(100) gallium-arsenide
with 50 nm nitride
silicon
Energy: 50 keV - 300 keV
Dose: $ 3.5{\cdot}10^{12}$cm$ ^{-2}$ - $ 3.5{\cdot}10^{13}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$, Rotation: 45 $ \,^\circ\;$
Pearson [86]
(100) silicon
boron
phosphorus
Energy (boron): 1 MeV - 7.1 MeV
Dose (boron): $ 1{\cdot}10^{13}$cm$ ^{-2}$ - $ 1{\cdot}10^{16}$cm$ ^{-2}$
Energy (phosphorus): 1 MeV - 5 MeV
Dose (phosphorus): $ 1{\cdot}10^{14}$cm$ ^{-2}$ - $ 6{\cdot}10^{15}$cm$ ^{-2}$
Tilt: 7 $ \,^\circ\;$
Pearson [30]

previous up next contents Previous: 3.1 Analytical Method Up: 3.1 Analytical Method Next: 3.1.2 Two-Dimensional Point Response


A. Hoessiger: Simulation of Ion Implantation for ULSI Technology