Part I: Theory and Implementation
Next:
2 Mathematical Considerations
Up:
PhD Thesis Nadim Khalil
Previous:
1.3 Thesis Overview
Part I: Theory and Implementation
2 Mathematical Considerations
2.1 Nonlinear Least Squares Optimization
2.1.1 Algorithm Description
2.1.2 Calculation of the Jacobian Matrix
2.1.3 Eigenvalues Analysis of the Approximate Hessian Matrix
2.1.4 Parameters Constraints
2.1.5 Parameters Accuracy and Confidence Region
2.1.6 Termination Criteria
2.2 Nonlinear Programming
2.2.1 Sequential Linear Programming
2.2.2 Sequential Quadratic Programming
2.3 Empirical Model Building
2.3.1 Run Matrix Generation
2.3.2 Polynomial Approximation Algorithm
2.4 The Monte Carlo Simulation Method
2.4.1 Statistical Background
2.4.2 Normal Distribution
2.4.3 Multinormal Distribution
2.5 Splines and TPS
2.5.1 One Dimensional Spline Representation
2.5.2 Tensor Product Spline Representation
3 Software Issues
3.1 Model Objects: Syntax and Semantics
3.2 Architecture
3.3 Task Module
Martin Stiftinger
Tue Aug 1 19:07:20 MET DST 1995