Index



next up previous contents
Next: About this document Up: PhD Thesis Nadim Khalil Previous: Curriculum Vitae

Index

meta-simulation
6 Technology Characterization
meta-simulation
6.4 Conclusion
L
6.2 Analytical Model Parameter
6.3 MOSFET Gate Length
B-spline
4.6 One-Dimensional Source/Drain Doping , 7 Conclusion
B-splines Knots placement
4.5.1 An Algorithm for
B-splines nonlinear regression
4.5 One-Dimensional MOS Doping
B-splines representation
4.1 Background
Boron
5.3 Implant Model Calibration
Broyden update scheme
2.1.2 Calculation of the
C-V characteristics:experimental
5.1.3 Comparisons with Experimental
C-V characteristics:simulated
5.1.3 Comparisons with Experimental
CMOS
4 MOSFET Profiling Using , 4.4 Methodology Overview, 6.1 Statistically Based Worst
CMOS ULSI technology
7 Conclusion
CMOS technology
6.1.2 Worst Case Condition
CV measurements
4.4 Methodology Overview
Debye length limitation
4.9.4 On the Subject
EASE
1.1 Review of Previous
Gauß -Newton
2.1 Nonlinear Least Squares
Hessian
2.1.3 Eigenvalues Analysis of
Hessian matrix
2.1.1 Algorithm Description
I-V and C-V characteristics
6.2.1 PCIM Model fit
I-V characteristics:experimental
5.1.3 Comparisons with Experimental
I-V characteristics:simulated
5.1.3 Comparisons with Experimental
Jacobian
2.1.1 Algorithm Description
Jacobian calaculation
2.1.2 Calculation of the
LISP
1.2 VISTA
Levenberg-Marquardt
2.1 Nonlinear Least Squares
Levenberg-Marquardt algorithm
5.4 Conclusion
MASTIF
1.1 Review of Previous
MECCA
1.1 Review of Previous
MINIMOS
5 TCAD Simulators Calibration, 5.1.2 Parameters Extraction, 5.1.3 Comparisons with Experimental , 5.2.1 Modeling Equations, 6.1.1 Device Variation Analysis, 6.2 Analytical Model Parameter , 6.3.1 An empirical model
MOSFET
6.3 MOSFET Gate Length
MOSFET device reliability
5.2 Avalanche Model Calibration
MOSFET length determination
4.4 Methodology Overview
Monte Carlo
2.3 Empirical Model Building, 2.4 The Monte Carlo , 5.3 Implant Model Calibration, 6 Technology Characterization
Monte Carlo simulation
6.1.1 Device Variation Analysis
N- and P-channel devices
6.2.1 PCIM Model fit
P-channel MOSFET
5.1 Mobility Model Calibration
PCIM
6.2.1 PCIM Model fit
PN diode
4.6 One-Dimensional Source/Drain Doping
Pearson IV functions
5.3 Implant Model Calibration
Poisson's equation
4.1 Background, 4.2 Capacitance Calculation, 4.5 One-Dimensional MOS Doping , 4.8 Two-Dimensional Extraction Results, 4.9.3 Method Limitations
Profile Interchange Format
1.1 Review of Previous
SIMS
4.4 Methodology Overview, 4.6 One-Dimensional Source/Drain Doping , 5.3.2 Fit to SIMS
SRP
4.6 One-Dimensional Source/Drain Doping
SUPREM-III
5 TCAD Simulators Calibration, 5.3.2 Fit to SIMS
Semiconductor Wafer Representation
1.1 Review of Previous
TCAD Frameworks
1.1 Review of Previous
TCAD Frameworks architecture
1.1 Review of Previous
TCAD framework
5.4 Conclusion
TCAD model
2 Mathematical Considerations, 2.3 Empirical Model Building
TCAD simulation
6 Technology Characterization, 6.2 Analytical Model Parameter
TCAD systems
1.1 Review of Previous
TCAD tasks
1.1 Review of Previous , 1.2 VISTA, 2 Mathematical Considerations, 7 Conclusion
TPS MOSFET profile representation
4.7 Starting Two-Dimensional Profile
TPS representation
4.1 Background, 4.4 Methodology Overview
TPS: multivariate approximation
2.5.2 Tensor Product Spline
ULSI
6.3 MOSFET Gate Length
VISTA
1.1 Review of Previous , 7 Conclusion
VISTA User Interface
1.2 VISTA
analytical mosfet model
6.2.1 PCIM Model fit
callback function
1.2 VISTA
capacitance calculation
4.2 Capacitance Calculation
carriers mobility
5.1 Mobility Model Calibration
characterization
2.1 Nonlinear Least Squares
chi-square
2.1 Nonlinear Least Squares
co-design
6 Technology Characterization
confidence region
2.1.5 Parameters Accuracy and , 4.9.2 Confidence Region of
confidence regions
6.1.2 Worst Case Condition
correlation
2.4.1 Statistical Background, 6.1.1 Device Variation Analysis
covariance
2.4.1 Statistical Background
covariance matrix
6.1.3 Corner Parameter Values
deep depletion approximation
4.5 One-Dimensional MOS Doping
deep depletion approximation, limitations
4.5 One-Dimensional MOS Doping
deep depletion approximation: Diode
4.6 One-Dimensional Source/Drain Doping
design of experiments (DOE)
2.3.1 Run Matrix Generation
design through optimization
2.2 Nonlinear Programming
device simulation
6.1.1 Device Variation Analysis
discretization errors
4.2 Capacitance Calculation
dopant profiling: SIMS
4.1 Background
dopant profiling: SRP
4.1 Background
dopant profiling: inverse modeling
4 MOSFET Profiling Using
dual Pearson distribution functions
5.3.1 Dual Pearson Distribution
effective channel length ()
6.3 MOSFET Gate Length
effective mobility
5.1.1 Model Equations
eigenvalues analysis
2.1.3 Eigenvalues Analysis of
empirical model building
6 Technology Characterization, 6.3.1 An empirical model
error reduction potential
4.5.1 An Algorithm for
general nonlinear spline approximation
2.5.1 One Dimensional Spline
hot carriers
5.2 Avalanche Model Calibration
impact ionization rate
5.2 Avalanche Model Calibration
inter-die variation
6.3 MOSFET Gate Length
inter-wafer variation
6.3 MOSFET Gate Length
intra-die variation
6.3 MOSFET Gate Length
inverse modeling
4.1 Background, 4.1 Background
ion implantation
5.3 Implant Model Calibration
joint probability density function (jpdf)
2.4.1 Statistical Background
knot placement
2.5.1 One Dimensional Spline
knot placements: results
4.5.2 Results
linear programming
2.2.1 Sequential Linear Programming
maximum probability probability
6.1.3 Corner Parameter Values
mean
2.4.1 Statistical Background
multi-dimensional normal jpdf
2.4.1 Statistical Background
multinormal distribution
6.1.3 Corner Parameter Values
multinormal jpdf
2.4.3 Multinormal Distribution
non-parametric modeling
2.5.1 One Dimensional Spline
nonlinear least-squares optimization
5 TCAD Simulators Calibration, Nonlinear Least-Squares Optimizer
nonlinear least-squares optimizer
7 Conclusion
normal pdf
2.4.2 Normal Distribution
numerical differentiation
4.2 Capacitance Calculation
numerical differentiation,errors in
4.2 Capacitance Calculation
numerical differentiations
2.1.2 Calculation of the
one-dimensional MOS profile extraction
4.5 One-Dimensional MOS Doping
optimization
1.2 VISTA
optimization - constraints
2.1.4 Parameters Constraints
optimization - nonlinear programming
2.2 Nonlinear Programming
optimization design
Technology Design Through
optimization initial guess
4.4 Methodology Overview
optimization nonlinear least-squares
4.4 Methodology Overview
optimization: nonlinear least-squares
2.1 Nonlinear Least Squares
parameters extraction
5.1.2 Parameters Extraction
polynomial piecewise approximation
2.5 Splines and TPS
polynomials
2.3 Empirical Model Building
polysilicon depletion effects
6.3 MOSFET Gate Length
polysilicon doping concentration
5.1.3 Comparisons with Experimental
principal components
6.1.1 Device Variation Analysis
probability
6.1.2 Worst Case Condition
probability density function (pdf)
2.4.1 Statistical Background
probability distribution functions
6.1.2 Worst Case Condition
process flow representation
1.1 Review of Previous
quadratic programming
2.2.2 Sequential Quadratic Programming
quantum mechanical effects
6.3 MOSFET Gate Length
random numbers
2.4 The Monte Carlo
response surface models
6.1.1 Device Variation Analysis
reverse short-channel effects
4.9.3 Method Limitations
saturation current
6.1 Statistically Based Worst
screening algorithms
2.3 Empirical Model Building
simulation flow controller
1.1 Review of Previous
simulators calibration
5 TCAD Simulators Calibration
space charge density
4.2 Capacitance Calculation
spline - B-spline
2.5.1 One Dimensional Spline
spline - one-dimensional
2.5.1 One Dimensional Spline
spline interpolation
2.5 Splines and TPS
spline parametrizations
4.3 Profile Representation
spline representation: artifacts
4.5.2 Results
spline: knots placement
4.3 Profile Representation
splines
2.5 Splines and TPS
standard deviation
2.1.5 Parameters Accuracy and , 2.4.1 Statistical Background, 6.1.1 Device Variation Analysis
statistical analysis
2.3 Empirical Model Building, 2.4 The Monte Carlo , 6.1.1 Device Variation Analysis
statistical input variables
6.2 Analytical Model Parameter
statistical variation
6.1.2 Worst Case Condition
statistics
2.4.1 Statistical Background
steepest descent
2.1 Nonlinear Least Squares
substrate current ()
5.2 Avalanche Model Calibration
sum of squares objective
2.1 Nonlinear Least Squares
technology characetrization
7 Conclusion
technology characterization
2.2 Nonlinear Programming
tensor product spline
2.5 Splines and TPS, 7 Conclusion
two-dimensional dopant profiling
5 TCAD Simulators Calibration, 5.1.3 Comparisons with Experimental
two-dimensional doping profile of a MOSFET
7 Conclusion
two-dimensional profile extraction
4.8 Two-Dimensional Extraction Results
two-dimensional profile extraction: accuracy
4.9.2 Confidence Region of
two-dimensional profile extraction: characteristics
4.9 Discussion
two-dimensional profile extraction: limitations
4.9.3 Method Limitations
two-dimensional profile extraction: resolution
4.8 Two-Dimensional Extraction Results
two-dimensional profile extraction: results
4.8 Two-Dimensional Extraction Results
two-dimensional profile extraction: validation
4.9.1 Validation
universal mobility model
5.1.1 Model Equations
velocity saturation
5.1.1 Model Equations
virtual fab
6 Technology Characterization
virtual factory
5 TCAD Simulators Calibration
worst case characterization
6.1 Statistically Based Worst
worst case technology characterization
5 TCAD Simulators Calibration



Martin Stiftinger
Tue Aug 1 19:07:20 MET DST 1995