next up previous contents
Next: Propagation Matrix Up: C.1 One Homogeneous Planar Previous: Matrix Notation

Matrix Factorization

For further investigations it is useful to split up $ \underline{\mathbf{C}}_{l}^{}$(z) into two parts, namely into a constant matrix $ \underline{\mathbf{K}}_{l}^{}$ describing the orientation of the wave propagation and into a z-dependent diagonal matrix $ \underline{\mathbf{D}}_{l}^{}$(z) representing the amplitude oscillation within the layer. Hence we write

 
$\displaystyle \underline{\mathbf{C}}_l(z) = \underline{\mathbf{K}}_l\,\underline{\mathbf{D}}_l(z)$ (C.9)

with

  $\displaystyle \underline{\mathbf{K}}_l = \begin{pmatrix}1 & 0 & 1 & 0 \\  0 & 1...
...2+k_{l,z}^2}{\eta_0k_lk_{l,z}} & -\frac{k_xk_y}{\eta_0k_lk_{l,z}} \end{pmatrix}$ (C.10)
  $\displaystyle \underline{\mathbf{D}}_l(z) =\begin{pmatrix}e^{+jk_{l,z}z} & 0 & ...
... 0 \\  0 & 0 & e^{-jk_{l,z}z} & 0 \\  0 & 0 & 0 & e^{-jk_{l,z}z} \end{pmatrix}.$ (C.11)

Some interesting properties exist for the three matrices defined by (C.11) to (C.13),

 
$\displaystyle \underline{\mathbf{D}}^{-1}_l(z)=\underline{\mathbf{D}}_l(-z),\qq...
...derline{\mathbf{I}},\qquad\underline{\mathbf{C}}_l(0)=\underline{\mathbf{K}}_l.$ (C.12)

The validity of each of these relations is self-evident. However, as they will be used further on we explicitly summarized them in (C.14). Additionally, the orientation matrix $ \underline{\mathbf{K}}_{l}^{}$ defined in (C.12) can be factorized as follows:

$\displaystyle \underline{\mathbf{K}}_l = \begin{pmatrix}\underline{\mathbf{I}} ...
...atrix}k_xk_y & (k_y^2+k_{l,z}^2) \\ -(k_x^2+k_{l,z}^2) & -k_xk_y \end{pmatrix}.$ (C.13)

Finally, the inverse matrix $ \underline{\mathbf{C}}_{l}^{-1}$(z) of $ \underline{\mathbf{C}}_{l}^{}$(z) is of interest. From (C.11) and (C.13) we obtain with (C.14)

 
$\displaystyle \underline{\mathbf{C}}_l^{-1}(z) = \underline{\mathbf{D}}_l(-z)\,\underline{\mathbf{K}}_l^{-1}$ (C.14)

whereby $ \underline{\mathbf{K}}_{l}^{-1}$ is given by

$\displaystyle \underline{\mathbf{K}}_l^{-1} = \frac{1}{2} \begin{pmatrix}\under...
...atrix}k_xk_y & (k_y^2+k_{l,z}^2) \\ -(k_x^2+k_{l,z}^2) & -k_xk_y \end{pmatrix}.$ (C.15)

Note that $ \underline{\mathbf{S}}_{l}^{-1}$ simply equals to $ \underline{\mathbf{S}}_{l}^{-1}$ = - 1/$ \eta_{0}^{2}$ $ \underline{\mathbf{S}}_{l}^{}$.

Summarizing the results of the matrix notation and factorization (cf. (C.10), (C.11) and (C.16)) shows that the lateral field components ul(z) are related to the electric amplitudes el by

 
$\displaystyle \mathbf{u}_l(z) = \underline{\mathbf{K}}_l\,\underline{\mathbf{D}...
... \underline{\mathbf{D}}_l(-z)\,\underline{\mathbf{K}}^{-1}_l\, \mathbf{u}_l(z).$ (C.16)


next up previous contents
Next: Propagation Matrix Up: C.1 One Homogeneous Planar Previous: Matrix Notation
Heinrich Kirchauer, Institute for Microelectronics, TU Vienna
1998-04-17