next up previous contents
Next: C.2 Stack of Homogeneous Up: C.1 One Homogeneous Planar Previous: Matrix Factorization

Propagation Matrix

Now it is easy to find a relation like

 
$\displaystyle \mathbf{u}(z+\Delta z) = \underline{\mathbf{L}}_l(\Delta z) \mathbf{u}(z),$ (C.17)

which connects the lateral field components at two different vertical points that are at a distance $ \Delta$z from each other. The matrix $ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) is called the propagation matrix of the layer l and is obtained in the following way: Evaluating (C.18) at the two different points gives ul(z + $ \Delta$z) = $ \underline{\mathbf{K}}_{l}^{}$ $ \underline{\mathbf{D}}_{l}^{}$(z + $ \Delta$z)el and el = $ \underline{\mathbf{D}}_{l}^{}$(- z$ \underline{\mathbf{K}}^{-1}_{l}$ul(z), which combines with the second relation of (C.14) to

$\displaystyle \mathbf{u}_l(z+\Delta z) = \underline{\mathbf{K}}_l\,\underline{\mathbf{D}}_l(\Delta z)\,\underline{\mathbf{K}}_l^{-1}\mathbf{u}_l(z).$ (C.18)

Hence an explicit expression for the propagation matrix $ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) can be derived to

$\displaystyle \underline{\mathbf{L}}_l(\Delta z)$ $\displaystyle = \frac{1}{2} \begin{pmatrix}\underline{\mathbf{I}}\:& \phantom{-...
...}}^{-1} \\  \underline{\mathbf{I}} & -\underline{\mathbf{S}}^{-1} \end{pmatrix}$    
  $\displaystyle = \frac{1}{2} \begin{pmatrix}e^{+jk_{l,z}\Delta z}\underline{\mat...
...^{-1} \\  \underline{\mathbf{I}} & -\underline{\mathbf{S}}_l^{-1} \end{pmatrix}$    
  $\displaystyle = \frac{1}{2} \begin{pmatrix}(e^{+jk_{l,z}\Delta z} + e^{-jk_{l,z...
...z} + e^{-jk_{l,z}\Delta z}) \underline{\mathbf{I}}\phantom{^{-1}} \end{pmatrix}$    
  $\displaystyle = \begin{pmatrix}\cos(k_{l,z}\Delta z)\underline{\mathbf{I}} & j\...
...ine{\mathbf{S}}_l & \cos(k_{l,z}\Delta z) \underline{\mathbf{I}} \end{pmatrix}.$ (C.19)

The propagation matrix has some interesting properties. For example, in case of a vanishing distance $ \Delta$z = 0 we obtain $ \underline{\mathbf{L}}_{l}^{}$(0) = $ \underline{\mathbf{I}}$. It can also be shown that the reciprocity relation $ \underline{\mathbf{L}}_{l}^{-1}$($ \Delta$z) = $ \underline{\mathbf{L}}_{l}^{}$(- $ \Delta$z) exists. Additionally, in two-dimensionsa the matrices $ \underline{\mathbf{I}}$ and $ \underline{\mathbf{S}}_{l}^{}$ are replaced by its determinants, i.e., $ \underline{\mathbf{I}}$ $ \mapsto$ det$ \underline{\mathbf{I}}$ = 1 and $ \underline{\mathbf{S}}_{l}^{}$ $ \mapsto$ det$ \underline{\mathbf{S}}_{l}^{}$ = 1/$ \eta_{0}^{2}$. The resulting expression for the propagation matrix (C.21) can be found in many textbooks, e.g., in [11, p. 58]. Finally, $ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) is a normal matrix as $ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z)$ \underline{\mathbf{L}}_{l}^{\mathrm{H}}$($ \Delta$z) = $ \underline{\mathbf{L}}_{l}^{\mathrm{H}}$($ \Delta$z)$ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) holds, whereby the superscript H denotes Hermitian or complex-conjugate transposition. This property proves the existence of an eigenvalue decomposition. The four eigenvalues of $ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) consist of two pairs $ \lambda_{1}^{}$ and $ \lambda_{2}^{}$ that are both of manifold two. They are inverse as the determinant and thus their product equals unity, i.e., det$ \underline{\mathbf{L}}_{l}^{}$($ \Delta$z) = $ \lambda_{1}^{2}$$ \lambda_{2}^{2}$ = 1. The two values $ \lambda_{1}^{}$ and $ \lambda_{2}^{}$ can easily be calculated and equal to $ \lambda_{1,2}^{}$ = exp( $ \pm$ jkl, z$ \Delta$z), which correctly describes the damping exp( $ \mp$ Im[kl, z]$ \Delta$z) and the oscillation exp( $ \pm$ jRe[kl, z]$ \Delta$z) of the plane wave traveling upwards and downwards the layer.



Footnotes

... two-dimensionsa
A two-dimensional analysis always suffices because the field lies in one common plane and the coordinates can be chosen in such a way that one lateral field vector component vanishes. However, we present a three-dimensional analysis as the results can directly be used as boundary conditions for the differential method.

next up previous contents
Next: C.2 Stack of Homogeneous Up: C.1 One Homogeneous Planar Previous: Matrix Factorization
Heinrich Kirchauer, Institute for Microelectronics, TU Vienna
1998-04-17