next up previous contents
Next: 3.3 Band-Structure Up: 3.2 Lattice and Thermal Previous: 3.2.3 Thermal Conductivity

3.2.4 Specific heat

The specific heat capacity $c_{{\mathrm{L}}}$ is modeled by
\begin{displaymath}
c_{\mathrm{L}}(T_{\mathrm{L}}) = c_{300} + c_1\cdot \frac{\d...
...rm{L}}}{\mathrm{300 K}}\right)^\beta + \frac{c_1}{c_{300}}}}.
\end{displaymath} (3.58)

$c_{300}$ is the value for the specific heat at 300 K [92]. The model is used for the basic materials and for insulators. In Fig. 3.5, Fig. 3.6, and Fig. 3.7 we present comparisons between experimental data and the results obtained with our model for the specific heat. Note the excellent agreement it gives in a wide temperature range (50 K - 800 K). The parameter values used are summarized in Table 3.7.


Table 3.7: Parameter values for the specific heat
Material $c_{300}$ [J/K kg] $c_1$ [J/K kg] $\beta$ Reported $c_{300}$ [J/K kg] References
Si 711 255 1.85 700 [85]
Ge 360 130 1.3 310 [85]
GaAs 322 50 1.6 350 [85,92]
AlAs 441 50 1.2 490 [92]
InAs 394 50 1.95 394 [92]
InP 410 50 2.05 410 [92]
GaP 519 50 2.6 519 [92]
SiO$_2$ 709 696 1.5 1000 [85]
Si$_3$N$_4$ 709 820 1.5 800 [98]


The specific heat capacity coefficients for alloy materials are expressed by a linear interpolation between the values of the basic materials (A and B).

\begin{displaymath}
c_{\mathrm{L}}^{\mathrm {AB}} = \left(1-x\right)\cdot c_{\mathrm{L}}^{\mathrm {A}} + x\cdot c_{\mathrm{L}}^{\mathrm {B}}
\end{displaymath} (3.59)

The specific heat capacity is then expressed by (3.58).

Figure 3.5: Temperature dependence of the specific heat: Comparison between experimental data and the model for Si and Ge
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Csh1.eps}}

Figure 3.6: Temperature dependence of the specific heat: Comparison between experimental data and the model for GaAs and AlAs
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Csh2.eps}}

Figure 3.7: Temperature dependence of the specific heat: Comparison between experimental data and the model for SiO$_2$
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/CshSiO2.eps}}


next up previous contents
Next: 3.3 Band-Structure Up: 3.2 Lattice and Thermal Previous: 3.2.3 Thermal Conductivity
Vassil Palankovski
2001-02-28