next up previous contents
Next: 3.2.4 Specific heat Up: 3.2 Lattice and Thermal Previous: 3.2.2 Mass Density

3.2.3 Thermal Conductivity

The temperature dependence of $\kappa_{\mathrm{L}}$ of the basic materials and insulators is modeled by a simple power law
\begin{displaymath}
\kappa_{\mathrm{L}}(T_{\mathrm{L}}) = \kappa_{300}\cdot\left(\frac{T_{\mathrm{L}}}{\mathrm{300 K}}\right)^\alpha
\end{displaymath} (3.55)

where $\kappa_{300}$ is the value for the thermal conductivity at 300 K. This approximation is in good agreement with experimental data [105,106,107,108], as presented in Fig. 3.1 and Fig. 3.2 where comparisons in the temperature range from 300 K to 800 K. The parameter values used are summarized in Table 3.5.


Table 3.5: Parameter values for thermal conductivity
Material $\kappa_{300}$ [W/K m] $\alpha$ Reported $\kappa_{300}$ [W/K m] References
Si 148 -1.3 150 [85,86]
Ge 60 -1.25 60 [85,86]
GaAs 46 -1.25 45.5-46 [108,92,85,86]
AlAs 80 -1.37 80 [108]
InAs 27.3 -1.1 27.3-48 [108,92]
InP 68 -1.4 68 [108,92]
GaP 77 -1.4 77 [108,92]
SiO$_2$ 1.38 0.33 1.4 [85,86]
Si$_3$N$_4$ 18.5 0.33 15-27 [98]


In the case of alloy materials $\mathrm{A}_{1-x}\mathrm{B}_{x}$, $\kappa_{{\mathrm{L}}}$ varies between the values of the basic materials (A and B). A harmonic mean is used to model $\kappa_{300}$. An additional bowing factor $C_\kappa$ is introduced in order to account for the drastic reduction of the thermal conductivity with the increase of material composition $x$. The exponent $\alpha$ is linearly interpolated because of lack of experimental data at temperatures other than 300 K.

$\displaystyle \kappa_{300}^{\mathrm {AB}}$ $\textstyle =$ $\displaystyle \frac{1}{\displaystyle{\left(\frac{1-x}
{\kappa_{300}^{\mathrm {A...
...{\kappa_{300}^{\mathrm {B}}}+
\frac{\left(1-x\right)\cdot x}{C_\kappa}\right)}}$ (3.56)
$\displaystyle \alpha^{\mathrm {AB}}$ $\textstyle =$ $\displaystyle \left(1-x\right)
\cdot\alpha^{\mathrm {A}} + x\cdot\alpha^{\mathrm {B}}$ (3.57)

The parameter values used are summarized in Table 3.6.

Table 3.6: Parameter values for thermal conductivity bowing factor
Material $C_\kappa$ [W/K m]
SiGe 2.8
AlGaAs 3.3
InGaAs 1.4
InAlAs 3.3
InAsP 3.3
GaAsP 1.4
InGaP 1.4


In Fig. 3.3 and Fig. 3.4 comparisons between data from [106,107,108,109,110,111] and the results obtained with our model are shown for the thermal conductivity in alloy materials at 300 K.

Figure 3.1: Temperature dependence of the thermal conductivity: Comparison between experimental data and the model for Si, Ge, and GaP
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Ctc1.eps}}

Figure 3.2: Temperature dependence of the thermal conductivity: Comparison between experimental data and the model for InP, GaAs, and InAs
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Ctc2.eps}}

Figure 3.3: Material composition dependence of the thermal conductivity: Comparison between experimental data and the model for SiGe and InGaAs
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Ctcx1.eps}}

Figure 3.4: Material composition dependence of the thermal conductivity: Comparison between experimental data and the model for InAsP and AlGaAs
\resizebox{\halflength}{!}{
\includegraphics[width=\halflength]{figs/Ctcx2.eps}}


next up previous contents
Next: 3.2.4 Specific heat Up: 3.2 Lattice and Thermal Previous: 3.2.2 Mass Density
Vassil Palankovski
2001-02-28