next up previous contents
Next: 3.4 Carrier Mobility Up: 3.3 Band-Structure Previous: 3.3.4 Effective Carrier Mass

3.3.5 Effective Density of States

The effective density of states (DOS) in the conduction and the valence bands are expressed by the following theoretical expressions [86]:
$\displaystyle N_{C}$ $\textstyle =$ $\displaystyle 2\cdot M_C\cdot{\left(\frac{2\cdot \pi\cdot m_n \cdot
k_B\cdot T_{{\mathrm{L}}}}{h^{2}}\right)}^{3/2}$ (3.91)
$\displaystyle N_{V}$ $\textstyle =$ $\displaystyle 2\cdot{\left(\frac{2\cdot \pi\cdot m_p \cdot
k_B\cdot T_{{\mathrm{L}}}}{h^{2}}\right)}^{3/2}$ (3.92)

$M_C$ represents the number of equivalent energy minima in the conduction band.

Table 3.19: Parameter values for energy minima in the DOS model
Material $M_C$ Material $M_C$
Si 6 InAs 1
Ge 4 InP 1
GaAs 1 GaP 3
AlAs 3    


For $\mathrm{Si}$ an alternative model based on data after Green [120] is implemented, which is based on a second order polynomial fit.

$\displaystyle N_{C,V}$ $\textstyle =$ $\displaystyle N_{0,\nu} + N_{1,\nu}\cdot \left(\frac{T_{\mathrm{L}}}{\mathrm{30...
...}}\right)+ N_{2,\nu}\cdot \left(\frac{T_{\mathrm{L}}}{\mathrm{300 K}}\right)^2$ (3.93)


Table 3.20: Parameter values for modeling the effective carrier masses
Material $N_{0,n}$[cm$^{-3}$] $N_{1,n}$[cm$^{-3}$] $N_{2,n}$[cm$^{-3}$] $N_{0,p}$[cm$^{-3}$] $N_{1,p}$[cm$^{-3}$] $N_{2,p}$[cm$^{-3}$]
Si -0.14e19 1.56e19 1.44e19 -0.17e19 0.93e19 2.34e19


In the model for alloy materials effective carrier masses of the constituents are used in the expressions (3.91) and (3.92).

In the case of a transition between a direct and an indirect bandgap in III-V ternary compounds the valley degeneracy factor $M_C$ is modeled by an expression equivalent to the one proposed in [157].

\begin{displaymath}
M_{C} = M_{C}^\mathrm {d}\cdot\exp\left(\frac{E_{\mathrm{g}}...
...E_{\mathrm{g}}-E_{\mathrm{g,X}}}{\mathrm{k_B}\cdot T_L}\right)
\end{displaymath} (3.94)

The superscripts $\mathrm {d}$ and $\mathrm {i}$ denote direct and indirect, respectively.

In the case of SiGe the splitting of the valley degeneracy due to strain is modeled accordingly as in [158].

\begin{displaymath}
M_{C} = M_{C}^\mathrm {Si}\cdot\exp\left(-{\frac{\delta E_{C...
...rac{\delta E_{C}}{\mathrm{k_B}\cdot T_L}\cdot x}\right)\right)
\end{displaymath} (3.95)

Here, $\delta E_{C}$ denotes the energy difference between the valleys shifted down and up in energy, respectively. It is set equal to 0.6 eV as given in [158].
next up previous contents
Next: 3.4 Carrier Mobility Up: 3.3 Band-Structure Previous: 3.3.4 Effective Carrier Mass
Vassil Palankovski
2001-02-28