next up previous contents
Next: 4. Simulation Application Up: 3.7 Generation and Recombination Previous: 3.7.4 Band-to-Band Tunneling

Subsections



3.7.5 Impact Ionization

The impact ionization (II) models support both the drift-diffusion (DD) and the hydrodynamic (HD) transport models, therefore, electric field dependent DD II models and carrier temperature dependent HD II models are used in MINIMOS-NT.


3.7.5.1 Drift-Diffusion Impact Ionization

In DD simulation the model from [33] is used to calculate the II generation rates for electrons and holes, respectively. The overall generation rate is the sum of these two generation rates and can be expressed as a negative recombination rate.
\begin{displaymath}
-R^{\mathrm{II}}=G_{n}^{\mathrm{II}}+G_{p}^{\mathrm{II}}= \a...
...}} \cdot \frac{\left\vert\mathbf{J}_p\right\vert}{\mathrm{q}}.
\end{displaymath} (3.152)

The ionization coefficients $\alpha_{n,\mathrm {bulk}}$ and $\alpha_{p,\mathrm {bulk}}$ are expressed by Chynoweth's law
    $\displaystyle \alpha_{n,\mathrm {bulk}}=\alpha_{n,\mathrm {bulk}}^{\infty}\cdot...
...\mathbf{J}_n \right\vert}
{\mathbf{E}\cdot\mathbf{J}_n}\right)^{\beta_n}\right)$ (3.153)
    $\displaystyle \alpha_{p,\mathrm {bulk}}=\alpha_{p,\mathrm {bulk}}^{\infty}\cdot...
...\mathbf{J}_p \right\vert}
{\mathbf{E}\cdot\mathbf{J}_p}\right)^{\beta_p}\right)$ (3.154)

The default values are summarized in Table 3.38.

Table 3.38: Parameter values for DD impact ionization model
Material $\alpha_{n,\mathrm {bulk}}$[m$^{-1}$] $E_{n,\mathrm {bulk}}^{\mathrm {crit}}$[V/m] $\beta_n$ $\alpha_{p,\mathrm {bulk}}$[m$^{-1}$] $E_{p,\mathrm {bulk}}^{\mathrm {crit}}$[V/m] $\beta_p$ Reference
Si 7.03e7 1.231e8 1.0 1.528e8 2.036e8 1.0  
Ge 1.55e9 1.560e8 1.0 1e9 1.28e8 1.0 [33]
GaAs 3.5e7 6.85e7 2.0 3.5e7 6.85e7 2.0 [190]
GaP 4.0e7 1.18e8 2.0 4.0e7 1.18e8 2.0 [190]


To account for surface effects, the surface ionization rates $\alpha_{n,\mathrm {surf}}$ and $\alpha_{p,\mathrm {surf}}$ can deviate from the bulk rates. The electron surface ionization rate is calculated in a similar way (analog for holes)

\begin{displaymath}
\alpha_{n,\mathrm {surf}}=\alpha_{n,\mathrm {surf}}^{\infty}...
...\vert}
{\mathbf{E} \cdot\mathbf{J}_n}\right)^{\beta_n}\right).
\end{displaymath} (3.155)

$F(y)$ is given by (3.120) and depending on the surface distance $y$ describes a smooth transition between the surface and bulk generation rates. The parameter $y^\mathrm {ref}$ denotes a critical length. The final surface dependent ionization rate reads
\begin{displaymath}
\alpha_{n,\mathrm {eff}}=F(y)\cdot \alpha_{n,\mathrm {surf}} + (1-F(y))\cdot\alpha_{n,\mathrm {bulk}}.
\end{displaymath} (3.156)

The effect is considered only for Si and the following values are used:

Table 3.39: Parameter values for surface DD impact ionization model
Material $\alpha_{n,\mathrm {surf}}$ [m$^{-1}$] $E_{n,\mathrm {surf}}^{\mathrm {crit}}$ [V/m] $\alpha_{p,\mathrm {surf}}$ [m$^{-1}$] $E_{p,\mathrm {surf}}^{\mathrm {crit}}$ [V/m] $y^\mathrm {ref}$ [nm]
Si 1.03e7 1.50e8 4.0e8 3.0e8 10


3.7.5.2 Hydrodynamic Impact Ionization

In a HD simulation, the carrier temperatures are used as parameters in the hydrodynamic impact ionization model. The implemented equation for the electron generation rate depending on the concentration $n$ and the bandgap energy $E_{\mathrm{g}}$ [191,192] reads (analog for holes)
\begin{displaymath}
G_n\left(T_n,n\right) = n\cdot A\cdot\left(\left(1+\frac{u}{...
...{2}\cdot\sqrt{u}\cdot
\exp\!\left(\frac{-1}{u}\right)\right),
\end{displaymath} (3.157)


\begin{displaymath}
u = \frac{\mathrm{k_B}\cdot T_n}{E_{\mathrm{g}}}.
\end{displaymath} (3.158)

The prefactor $A$ depends on the carrier and lattice temperatures and the local bandgap

\begin{displaymath}
A(T_{{\mathrm{L}}},T_n,E_{\mathrm{g}})=\frac{1}{C_1}\!\cdot ...
...\!C_4\!\cdot\! \frac{T_{{\mathrm{L}}}-T_0}{T_0}\right)\right).
\end{displaymath} (3.159)

The variables $T_0$ and $E_0$ correspond to 300 K and $E_{\mathrm{g}}(300 \rm K)$, respectively.


Table 3.40: Parameter values for HD impact ionization model
Material $C_1$ [s] $C_2$ $C_3$ $C_4$
Si 9.531e-9 3.823 0.346333 0.0922


The overall generation rate is the sum of the electron and hole generation rates, and is equal to a negative recombination rate

\begin{displaymath}
R^{\mathrm{II}}=-G_{n}^{\mathrm{II}}-G_{p}^{\mathrm{II}}.
\end{displaymath} (3.160)

Another simple, but very practical model is available for modeling the impact ionization rate in all semiconductors. It reads for electrons

\begin{displaymath}
G_n\left(T_n,T_{{\mathrm{L}}},n\right) = n\cdot A\cdot\exp\!\left(\frac{-B\cdot E_{\mathrm{g}}}{\mathrm{k_B}\cdot T_n}\right)
\end{displaymath} (3.161)

and, respectively, for holes
\begin{displaymath}
G_p\left(T_p,T_{{\mathrm{L}}},p\right) = p\cdot A\cdot\exp\!...
...t(\frac{-B\cdot E_{\mathrm{g}}}{\mathrm{k_B}\cdot T_p}\right).
\end{displaymath} (3.162)

The default values recommended for the simple HD II model are summarized in the following table:

Table 3.41: Parameter values for HD impact ionization model
Material $A$ [s$^{-1}$] $B$
Si&Ge 1e13 0.92
III-Vs 1e13 1.0


This model has been already successfully applied in simulation of GaAs-based and InP-based HEMTs [193,194]. However, it has not been applied in simulation of III-V HBTs yet.


next up previous contents
Next: 4. Simulation Application Up: 3.7 Generation and Recombination Previous: 3.7.4 Band-to-Band Tunneling
Vassil Palankovski
2001-02-28