next up previous
Next: C. Statistical Results Up: . Previous: A. The Active Load-Pull

B. Quantum Mechanical Considerations

Solving the Schrödinger equation in one dimension the electron concentration in the channel is approximated by Fischer in [90]:


    $\displaystyle n(z)= N_C \cdot e^{\displaystyle \frac{E_F-E_0}{{\it k}_{\mathrm{...
...1-e^{\displaystyle - \bigg(\frac{2\cdot \pi \cdot z}{\lambda_B}\bigg)^2} \bigg]$ (B.1)

The characteristic tunneling length in one-dimensional quantization is estimated by:


    $\displaystyle \frac{\lambda_B}{2\pi}= \displaystyle \frac{h}{2 \cdot \pi \cdot
...
...}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}}= \frac{1.2165}{\sqrt{m_z}}
\text{[nm]}$ (B.2)

$ E_F$ represents the Fermi energy and $ E_0$ the minimum energy. The following Table B.1 gives values for various material systems for $ {\it T}_\mathrm{L}$= 300 K.


Table B.1: Tunneling parameter for various materials.
Material $ m_z$ $ \lambda_B/2\pi$
  [-] [nm]
GaAs 0.067 4.7
Al$ _{0.2}$Al$ _{0.8}$As 0.075 4.4
In$ _{0.25}$Ga$ _{0.75}$As 0.052 5.29
In$ _{0.53}$Ga$ _{0.47}$As 0.041 6.0
In$ _{0.52}$Al$ _{0.48}$As 0.070 4.6
GaN 0.20 2.7
Al$ _{0.25}$Ga$ _{0.75}$N 0.23 2.53



next up previous
Next: C. Statistical Results Up: . Previous: A. The Active Load-Pull
Quay
2001-12-21