next up previous
Next: 3.2.5 Carrier Mobility Up: 3.2 Material Models Previous: 3.2.3.3 Effective Carrier Masses

3.2.4 Effective Density of States

The effective density of states are modeled according (3.33) and (3.34):


    $\displaystyle N_C = 2 \cdot M_C \bigg( \frac{2\pi \cdot m_n \cdot {\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}{h^2}\bigg)^{3/2}$ (3.32)


    $\displaystyle N_V = 2 \cdot \bigg( \frac{2\pi \cdot m_p\cdot {\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}{h^2}\bigg)^{3/2}$ (3.33)

where $ M_C$ is the number of the equivalent energy minima. Table 3.12 gives the values of $ M_C$ for the binary semiconductors. For the ternary semiconductors $ M_C^{AB}$ is composed using the effective masses. For the transition between an indirect to a direct semiconductor ternary alloy (in a HEMT e.g. for Al$ _x$Ga$ _{1-x}$As with x= 0.45), the following equation is used:

    $\displaystyle M_C^{AB} = M_C^A \cdot \exp \bigg(- \frac{E^{AB}}{{\it k}_{\mathr...
...\frac{E^{AB}}{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}\cdot x \bigg)\bigg)$ (3.34)


Table 3.12: Model parameters for effective density of states for basic semiconductors.
Material Valley M$ _C$ References
GaAs $ \Gamma$ 1 -
AlAs X 3 -
InAs $ \Gamma$ 1 -
InP $ \Gamma$ 1 -
GaN $ \Gamma$ 1 [38]
AlN $ \Gamma$ 1 [204]
InN $ \Gamma$ 1 [203]
Si X 6 -



next up previous
Next: 3.2.5 Carrier Mobility Up: 3.2 Material Models Previous: 3.2.3.3 Effective Carrier Masses
Quay
2001-12-21