next up previous
Next: 3.3.4.2 The Ohmic Contact: Up: 3.3.4 Semiconductor-Metal Interfaces: The Previous: 3.3.4 Semiconductor-Metal Interfaces: The

3.3.4.1 The Ohmic Contact: Electrical Treatment

The potential at the conventional Ohmic contact interface is calculated in a local standard model. The assumed condition for the potential reads:
    $\displaystyle \varphi_s = \varphi_m +\psi_{bi}$ (3.99)

with $ \varphi_s$ the contact potential, $ \varphi_m$ the metal quasi Fermi-level equivalent to the applied contact voltage, and $ \psi_{bi}$ the built-in potential. (3.102) represents a Dirichlet condition. The built-in potential equals the potential caused by the Fermi level adjustment at any interface. This potential reads, as given in [90]:


$\displaystyle \psi_{bi} $ $\displaystyle =$ $\displaystyle  \frac{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}{q}\cdot \ln\bigg(\frac{1}{2\cdot
C_1}\cdot \Big( C+ \sqrt{C^2+4\cdot C_1\cdot C_2}\Big)\bigg)$ (3.100)
$\displaystyle  $ $\displaystyle =$ $\displaystyle  - \frac{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}{q}\cdot \l...
...gg(\frac{1}{2\cdot
C_2}\cdot \Big(-C+ \sqrt{C^2+4\cdot C_1\cdot C_2}\Big)\bigg)$ (3.101)

$ C$ is the overall net concentration of the applied doping at the boundary. The auxiliary coefficients in (3.104) are defined as:
    $\displaystyle C_1 = N_C \cdot \exp  \bigg(\frac{-E_C}{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}} \bigg)$ (3.102)


    $\displaystyle C_2 = N_V \cdot \exp  \bigg(\frac{-E_V}{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}} \bigg)$ (3.103)

The carrier concentrations in the semiconductor at the boundary are pinned to the equilibrium concentrations at the contact, which read:
    $\displaystyle n_s = N_C \cdot \exp \bigg( \frac{-E_C+q \cdot \psi_{bi}}{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}\bigg)$ (3.104)

and:
    $\displaystyle p_s = N_V \cdot \exp \bigg(\frac{ E_V- q \cdot \psi_{bi}}{{\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{L}}\bigg)$ (3.105)

This assumes a high doping of the semiconductor of the order of $ {\it N}_{\mathrm{D}}\geq$ 10$ ^{18}$ cm$ ^{-3}$. Any specific interface effects, such as dipole charges, surface charges, or a resulting semiconductor-metal alloy, are neglected. The carrier temperatures $ {\it T}_\mathrm{\nu}$ at the Ohmic contact are modeled as:


    $\displaystyle {\it T}_\mathrm{L} = T_{\nu}$ (3.106)

with $ {\it T}_\mathrm{L}$ the lattice temperature at the contact, i.e., the carriers enter the semiconductor in thermal equilibrium. A finite electrical line resistance of the contact metal $ R_C$ can be included using:
    $\displaystyle \varphi_{m} = V_{applied}-I_{C}\cdot R_{C}$ (3.107)

with $ V_{applied}$ the applied terminal voltage, and $ I_{C}$ the current through the contact.


next up previous
Next: 3.3.4.2 The Ohmic Contact: Up: 3.3.4 Semiconductor-Metal Interfaces: The Previous: 3.3.4 Semiconductor-Metal Interfaces: The
Quay
2001-12-21