(image) (image) [Previous] [Next]

The Physics of Non–Equilibrium Reliability Phenomena

Bibliography

  • [1] J. H. Stathis, S. Mahapatra, and T. Grasser. “Controversial Issues in Negative Bias Temperature Instability”. In: Microelectronics Reliability 81 (2018), pp. 244–251. issn: 0026-2714. doi: 10.1016/j.microrel.2017.12.035.

  • [2] K. O. Jeppson and C. M. Svensson. “Negative Bias Stress of MOS Devices at High Eelectric Fields and Degradation of MNOS Devices”. In: Journal of Applied Physics 48.5 (1977), pp. 2004–2014. doi: 10.1063/1.323909.

  • [3] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. “Time-Dependent Defect Spectroscopy for Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors”. In: Phys. Rev. B 82 (24 Dec. 2010), p. 245318. doi: 10.1103/PhysRevB.82.245318.

  • [4] T. Grasser, K. Rott, H. Reisinger, M. Waltl, F. Schanovsky, and B. Kaczer. “NBTI in Nanoscale MOSFETs-The Ultimate Modeling Benchmark”. In: IEEE Transactions on Electron Devices 61.11 (Nov. 2014), pp. 3586–3593. doi: 10.1109/TED.2014.2353578.

  • [5] M. Kirton and M. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/f) Noise”. In: Advances in Physics 38.4 (1989), pp. 367–468. doi: 10.1080/00018738900101122.

  • [6] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P. Wagner, F. Schanovsky, J. Franco, M. T. Toledano Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction–Diffusion to Switching Oxide Traps”. In: IEEE Transactions on Electron Devices 58.11 (Nov. 2011), pp. 3652–3666. doi: 10.1109/TED.2011.2164543.

  • [7] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52.1 (2012). invited, pp. 39–70. doi: 10.1016/j.microrel.2011.09.002.

  • [8] T. Grasser. Bias Temperature Instability for Ddevices and Circuits. New York: Springer, 2014. isbn: 978-1-4614-7908-6. doi: 10.1007/978-1-4614-7909-3.

  • [9] T. Grasser, W. Goes, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V. V. Afanas’ev, A. Stesmans, A. .-M. El-Sayed, and A. L. Shluger. “On the Microscopic Structure of Hole Traps in pMOSFETs”. In: 2014 IEEE International Electron Devices Meeting. Dec. 2014, pp. 21.1.1–21.1.4. doi: 10.1109/IEDM.2014.7047093.

  • [10] F. Schanovsky, W. Gös, and T. Grasser. “Multiphonon Hole Trapping from First Principles”. In: Journal of Vacuum Science & Technology B 29.1 (2011), 01A201. doi: 10.1116/1.3533269.

  • [11] F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser. “A Multi Scale Modeling Approach to Non-Radiative Multi Phonon Transitions at Oxide Defects in MOS Structures”. In: Journal of Computational Electronics 11.3 (2012), pp. 218–224. doi: 10.1007/s10825-012-0403-1.

  • [12] G. Rzepa, M. Waltl, W. Gös, B. Kaczer, and T. Grasser. “Microscopic Oxide Defects Causing BTI, RTN, and SILC on High-K FinFETs”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2015, pp. 144–147. doi: 10.1109/SISPAD.2015.7292279.

  • [13] G. Rzepa, M. Waltl, W. Gös, B. Kaczer, J. Franco, T. Chiarella, N. Horiguchi, and T. Grasser. “Complete Extraction of Defect Bands Responsible for Instabilities in n and pFinFETs”. In: 2016 Symposium on VLSI Technology Digest of Technical Papers. 2016, pp. 208–209. doi: 10.1109/VLSIT.2016.7573437.

  • [14] Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller, and T. Grasser. “The Role of Charge Trapping in MoS2 /SiO2 and MoS2 /hBN Field-Effect Transistors”. In: 2D Materials 3.3 (2016), p. 035004. doi: 10.1088/2053-1583/3/3/035004.

  • [15] M. Waltl, G. Rzepa, A. Grill, W. Gös, J. Franco, B. Kaczer, L. Witters, J. Mitard, N. Horiguchi, and T. Grasser. “Superior NBTI in High-k SiGe Transistors - Part II: Theory”. In: IEEE Transactions on Electron Devices 64.5 (2017), pp. 2099–2105. doi: 10.1109/TED.2017.2686454.

  • [16] T. Grasser, M. Waltl, G. Rzepa, W. Goes, Y. Wimmer, A. .-M. El-Sayed, A. L. Shluger, H. Reisinger, and B. Kaczer. “The “Permanent” Component of NBTI Revisited: Saturation, Degradation-reversal, and Annealing”. In: 2016 IEEE International Reliability Physics Symposium (IRPS). Apr. 2016, 5A-2-1-5A-2–8. doi: 10.1109/IRPS.2016.7574504.

  • [17] T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. .-M. El-Sayed, A. Shluger, and B. Kaczer. “Gate-Sided Hydrogen Release as the Origin of "Permanent" NBTI Degradation: From Single Defects to Lifetimes”. In: 2015 IEEE International Electron Devices Meeting (IEDM). Dec. 2015, pp. 20.1.1–20.1.4. doi: 10.1109/IEDM.2015.7409739.

  • [18] T. Grasser, M. Waltl, K. Puschkarsky, B. Stampfer, G. Rzepa, G. Pobegen, H. Reisinger, H. Arimura, and B. Kaczer. “Implications of Gate-Sided Hydrogen Release for Post-Stress Degradation Build-Up After BTI Stress”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). Apr. 2017, 6A-2.1-6A–2.6. doi: 10.1109/IRPS.2017.7936334.

  • [19] T. Grasser, B. Stampfer, M. Waltl, G. Rzepa, K. Rupp, F. Schanovsky, G. Pobegen, K. Puschkarsky, H. Reisinger, B. O’Sullivan, and B. Kaczer. “Characterization and Physical Modeling of the Temporal Evolution of Near–Interfacial States resulting from NBTI/PBTI Stress in nMOS/pMOS Transistors”. In: 2018 IEEE International Reliability Physics Symposium (IRPS). Mar. 2018, 2A.2-1-2A.2–10. doi: 10.1109/IRPS.2018.8353540.

  • [20] S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, and S. Natarajan. “Transistor Aging and Reliability in 14nm Tri-Gate Technology”. In: 2015 IEEE International Reliability Physics Symposium. Apr. 2015, 2F.2.1–2F.2.5. doi: 10.1109/IRPS.2015.7112692.

  • [21] A. Rahman, J. Dacuna, P. Nayak, G. Leatherman, and S. Ramey. “Reliability Studies of a 10nm High-Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET and 5th Generation HK/MG”. In: IRPS. Mar. 2018, 6F.4-1-6F.4–6. doi: 10.1109/IRPS.2018.8353648.

  • [22] S. R. Stiffler, R. Ramachandran, W. K. Henson, N. D. Zamdmer, K. McStay, G. La Rosa, K. M. Boyd, S. Lee, C. Ortolland, and P. C. Parries. “Process Technology for IBM 14-nm Processor Designs Featuring Silicon-On-Insulator FinFETs”. In: IBM Journal of Research and Development 62.2/3 (Mar. 2018), 11:1–11:7. doi: 10.1147/JRD.2018.2800518.

  • [23] J. H. Lee, Y. M. Shcu, C. C. Wu, Y. M. Liu, Y. C. Chou, and S. C. Chin. “An Electrical Failure Analysis (EFA) Flow to Quantitatively Identify Invisible Defect on Individual Transistor: Using the Characterization of Random Dopant Fluctuation (RDF) as an Example”. In: 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). July 2018, pp. 1–5. doi: 10.1109/IPFA.2018.8452513.

  • [24] B. Kaczer, J. Franco, M. Cho, T. Grasser, P. J. Roussel, S. Tyaginov, M. Bina, Y. Wimmer, L. M. Procel, L. Trojman, F. Crupi, G. Pitner, V. Putcha, P. Weckx, E. Bury, Z. Ji, A. De Keersgieter, T. Chiarella, N. Horiguchi, G. Groeseneken, and A. Thean. “Origins and Implications of Increased Channel Hot Carrier Variability in nFinFETs”. In: 2015 IEEE International Reliability Physics Symposium. Apr. 2015, 3B.5.1–3B.5.6. doi: 10.1109/IRPS.2015.7112706.

  • [25] P. Magnone, F. Crupi, N. Wils, H. P. Tuinhout, and C. Fiegna. “Characterization and Modeling of Hot Carrier-Induced Variability in Subthreshold Region”. In: IEEE Transactions on Electron Devices 59.8 (Aug. 2012), pp. 2093–2099. doi: 10.1109/TED.2012.2200683.

  • [26] A. Makarov, B. Kaczer, P. Roussel, A. Chasin, A. Grill, M. Vandemaele, G. Hellings, A.-M. El-Sayed, T. Grasser, D. Linten, and S. E. Tyaginov. “Stochastic Modeling of the Impact of Random Dopants on Hot-Carrier Degradation in n-FinFETs”. In: IEEE Electron Device Letters 40.6 (2019), pp. 870–873. doi: 10.1109/LED.2019.2913625.

  • [27] P. Paliwoda, Z. Chbili, A. Kerber, T. Nigam, K. Nagahiro, S. Cimino, M. Toledano-Luque, L. Pantisano, B. W. Min, and D. Misra. “Self-Heating Effects on Hot Carrier Degradation and Its Impact on Logic Circuit Reliability”. In: IEEE Transactions on Device and Materials Reliability 19.2 (June 2019), pp. 249–254. doi: 10.1109/TDMR.2019.2916230.

  • [28] M. A. Alam, B. K. Mahajan, Y. Chen, W. Ahn, H. Jiang, and S. H. Shin. “A Device-to-System Perspective Regarding Self-Heating Enhanced Hot Carrier Degradation in Modern Field-Effect Transistors: A Topical Review”. In: IEEE Transactions on Electron Devices 66.11 (Nov. 2019), pp. 4556–4565. doi: 10.1109/TED.2019.2941445.

  • [29] S. E. Liu, J. S. Wang, Y. R. Lu, D. S. Huang, C. F. Huang, W. H. Hsieh, J. H. Lee, Y. S. Tsai, J. R. Shih, Y. Lee, and K. Wu. “Self-Heating Effect in FinFETs and its Impact on Devices Reliability Characterization”. In: 2014 IEEE International Reliability Physics Symposium. June 2014, 4A.4.1–4A.4.4. doi: 10.1109/IRPS.2014.6860642.

  • [30] S. Mittl and F. Guarin. “Self-Heating and its Implications on Hot Carrier Reliability Evaluations”. In: 2015 IEEE International Reliability Physics Symposium. Apr. 2015, 4A.4.1–4A.4.6. doi: 10.1109/IRPS.2015.7112726.

  • [31] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill. “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”. In: IEEE Transactions on Electron Devices 32.2 (Feb. 1985), pp. 375–385. doi: 10.1109/T-ED.1985.21952.

  • [32] B. S. Doyle, M. Bourcerie, C. Bergonzoni, R. Benecchi, A. Bravis, K. R. Mistry, and A. Boudou. “The Generation and Characterization of Electron and Hole Traps Created by Hole Injection During Low Gate Voltage Hot-Carrier Stressing of n-MOS Transistors”. In: IEEE Transactions on Electron Devices 37.8 (Aug. 1990), pp. 1869–1876. doi: 10.1109/16.57138.

  • [33] S. E. Rauch and G. La Rosa. “The Energy-Driven Paradigm of nMOSFET Hot-Carrier Effects”. In: IEEE Transactions on Device and Materials Reliability 5.4 (Dec. 2005), pp. 701–705. doi: 10.1109/TDMR.2005.860560.

  • [34] C. Guerin, V. Huard, and A. Bravaix. “General Framework About Defect Creation at the Si/SiO2 Interface”. In: Journal of Applied Physics 105.11 (2009), p. 114513. doi: 10.1063/1.3133096.

  • [35] M. Bina, S. Tyaginov, J. Franco, K. Rupp, Y. Wimmer, D. Osintsev, B. Kaczer, and T. Grasser. “Predictive Hot-Carrier Modeling of n-Channel MOSFETs”. In: IEEE Transactions on Electron Devices 61.9 (Sept. 2014), pp. 3103–3110. doi: 10.1109/TED.2014.2340575.

  • [36] E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews. “Electrochemical Charging of Thermal SiO2 Films by Injected Electron Currents”. In: Journal of Applied Physics 42.13 (1971), pp. 5654–5664. doi: 10.1063/1.1659996.

  • [37] Chenming Hu. “Lucky-Electron Model of Channel Hot Electron Emission”. In: 1979 International Electron Devices Meeting. 1979, pp. 22–25. doi: 10.1109/IEDM.1979.189529.

  • [38] W. Shockley. “Problems Related to p-n Junctions in Silicon”. In: Solid-State Electronics 2.1 (1961), pp. 35–67. doi: 10.1016/0038-1101(61)90054-5.

  • [39] Woltjer and Paulzen. “Universal Description of Hot-Carrier-Induced Interface States in nMOSFETs”. In: 1992 International Technical Digest on Electron Devices Meeting. 1992, pp. 535–538. doi: 10.1109/IEDM.1992.307418.

  • [40] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee. “Three Hot-Carrier Degradation Mechanisms in Deep-Submicron pMOSFETs”. In: IEEE Transactions on Electron Devices 42.1 (1995), pp. 109–115. doi: 10.1109/16.370028.

  • [41] K. Mistry and B. Doyle. “A Model for AC Hot-Carrier Degradation in n-Channel MOSFETs”. In: IEEE Electron Device Letters 12.9 (1991), pp. 492–494. doi: 10.1109/55.116928.

  • [42] K. R. Mistry and B. Doyle. “AC Versus DC Hot-Carrier Degradation in n-Channel MOSFETs”. In: IEEE Transactions on Electron Devices 40.1 (1993), pp. 96–104. doi: 10.1109/16.249430.

  • [43] D. J. DiMaria and J. W. Stasiak. “Trap Creation in Silicon Dioxide Produced by Hot Electrons”. In: Journal of Applied Physics 65.6 (1989), pp. 2342–2356. doi: 10.1063/1.342824.

  • [44] D. J. DiMaria. “Defect Generation Under Substrate-Hot-Electron Injection into Ultrathin Silicon Dioxide Layers”. In: Journal of Applied Physics 86.4 (1999), pp. 2100–2109. doi: 10.1063/1.371016.

  • [45] D. J. DiMaria and J. H. Stathis. “Anode Hole Injection, Defect Generation, and Breakdown in Ultrathin Silicon Dioxide Films”. In: Journal of Applied Physics 89.9 (2001), pp. 5015–5024. doi: 10.1063/1.1363680.

  • [46] S. E. Rauch and G. La Rosa. “The Energy Driven Paradigm of nMOSFET Hot Carrier Effects”. In: 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual.. 2005, pp. 708–709. doi: 10.1109/RELPHY.2005.1493216.

  • [47] K. Hess, L. Register, B. Tuttle, J. Lyding, and I. Kizilyalli. “Impact of Nanostructure Research on Conventional Solid-State Electronics: The Giant Isotope Effect in Hydrogen Desorption and CMOS Lifetime”. In: Physica E: Low-dimensional Systems and Nanostructures 3.1–3 (1998), pp. 1–7. doi: 10.1016/S1386-9477(98)00211-2.

  • [48] K. Hess. “Theory of Channel Hot-Carrier Degradation in MOSFETs”. In: Physica B: Condensed Matter 272.1-4 (Dec. 1999), pp. 527–531. doi: 10.1016/S0921-4526(99)00363-4.

  • [49] K. Hess, A. Haggag, W. McMahon, B. Fischer, K. Cheng, J. Lee, and J. Lyding. “Simulation of Si-SiO2 Defect Generation in CMOS Chips: From Atomistic Structure to Chip Failure Rates”. In: 2000 IEEE International Electron Devices Meeting (IEDM). Dec. 2000, pp. 93–96. doi: 10.1109/IEDM.2000.904266.

  • [50] W. McMahon and K. Hess. “A Multi-Carrier Model for Interface Trap Generation”. In: Journal of Computational Electronics 1.3 (2002), pp. 395–398. doi: 10.1023/A:1020716111756.

  • [51] W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding. “The Effects of a Multiple Carrier Model of Interface Trap Ggeneration on Lifetime Extraction for MOSFETs”. In: 2002 International Conference on Modeling and Simulation of Microsystems - MSM 2002. Ed. by M. Laudon and B. Romanowicz. 0970827571. 2002, pp. 576–579.

  • [52] W. McMahon, A. Haggag, and K. Hess. “Reliability Scaling Issues for Nanoscale Devices”. In: IEEE Transactions on Nanotechnology 2.1 (Mar. 2003), pp. 33–38. doi: 10.1109/TNANO.2003.808515.

  • [53] C. Guerin, V. Huard, and A. Bravaix. “The Energy-Driven Hot-Carrier Degradation Modes of nMOSFETs”. In: IEEE Transactions on Device and Materials Reliability 7.2 (2007), pp. 225–235. doi: 10.1109/TDMR.2007.901180.

  • [54] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. M. Roux, and E. Vincent. “Hot-Carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature”. In: 2009 IEEE International Reliability Physics Symposium. Apr. 2009, pp. 531–548. doi: 10.1109/IRPS.2009.5173308.

  • [55] A. Bravaix, V. Huard, D. Goguenheim, and E. Vincent. “Hot-Carrier to Cold-Carrier Device Lifetime Modeling with Temperature for Low Power 40nm Si-bulk NMOS and PMOS FETs”. In: 2011 International Electron Devices Meeting. Dec. 2011, pp. 27.5.1–27.5.4. doi: 10.1109/IEDM.2011.6131625.

  • [56] A. Bravaix, Y. M. Randriamihaja, V. Huard, D. Angot, X. Federspiel, W. Arfaoui, P. Mora, F. Cacho, M. Saliva, C. Besset, S. Renard, D. Roy, and E. Vincent. “Impact of the Gate-Stack Change from 40nm Node SiON to 28nm High-K Metal Gate on the Hot-Carrier and Bias Temperature Damage”. In: 2013 IEEE International Reliability Physics Symposium (IRPS). Apr. 2013, pp. 2D.6.1–2D.6.9. doi: 10.1109/IRPS.2013.6531961.

  • [57] S. Tyaginov, I. Starkov, O. Triebl, H. Ceric, T. Grasser, H. Enichlmair, J. M. Park, and C. Jungemann. “Secondary Generated Holes as a Crucial Component for Modeling of HC Degradation in High-Voltage n-MOSFET”. In: 2011 International Conference on Simulation of Semiconductor Processes and Devices. Sept. 2011, pp. 123–126. doi: 10.1109/SISPAD.2011.6035065.

  • [58] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.19273892002.

  • [59] M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Oxford New York: Oxford University Press, 1988.

  • [60] Y. Wimmer, W. Gös, A.-M. El-Sayed, A. L. Shluger, and T. Grasser. “On the Validity of the Harmonic Potential Energy Surface Approximation for Nonradiative Multiphonon Charge Transitions in Oxide Defects”. In: Book of Abstracts of the International Workshop on Computational Electronics (IWCE). 2015, pp. 97–98.

  • [61] Y. Wimmer. “Hydrogen Related Defects in Amorphous SiO2 and the Negative Bias Temperature Instability”. PhD thesis. E360, 2017.

  • [62] Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, and A. L. Shluger. “Role of Hydrogen in Volatile Behaviour of Defects in SiO2 -Based Electronic Devices”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 472.2190 (June 2016), p. 20160009. doi: 10.1098/rspa.2016.0009.

  • [63] C. H. Henry and D. V. Lang. “Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP”. In: Phys. Rev. B 15 (2 Jan. 1977), pp. 989–1016. doi: 10.1103/PhysRevB.15.989.

  • [64] A. Nitzan. Chemical Dynamics in Condensed Phases : Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford New York: Oxford University Press, 2006. isbn: 9780198529798. doi: 10.1002/cphc.200700074.

  • [65] T. Chachiyo and J. H. Rodriguez. “A Direct Method for Locating Minimum-Energy Crossing Points (MECPs) in Spin-Forbidden Transitions and Nonadiabatic Reactions”. In: The Journal of Chemical Physics 123.9 (2005), p. 094711. doi: 10.1063/1.2007708.

  • [66] Y. Jia, S. Poncé, A. Miglio, M. Mikami, and X. Gonze. “Beyond the One-Dimensional Configuration Coordinate Model of Photoluminescence”. In: Phys. Rev. B 100 (15 Oct. 2019), p. 155109. doi: 10.1103/PhysRevB.100.155109.

  • [67] http://viennashe.sourceforge.net/. 2014.

  • [68] P. Sharma, S. E. Tyaginov, S. E. Rauch, J. Franco, A. Makarov, M. I. Vexler, B. Kaczer, and T. Grasser. “Hot-Carrier Degradation Modeling of Decananometer nMOSFETs Using the Drift-Diffusion Approach”. In: IEEE Electron Device Letters 38.2 (2017), pp. 160–163. doi: 10.1109/LED.2016.2645901.

  • [69] J. W. Lyding, K. Hess, and I. C. Kizilyalli. “Reduction of Hot Electron Degradation in Metal Oxide Semiconductor Transistors by Deuterium Processing”. In: Applied Physics Letters 68.18 (1996), pp. 2526–2528. doi: 10.1063/1.116172.

  • [70] E. Li, E. Rosenbaum, J. Tao, and P. Fang. “CMOS Hot Carrier Lifetime Improvement from Deuterium Anneal”. In: 56th Annual Device Research Conference Digest. June 1998, pp. 22–23. doi: 10.1109/DRC.1998.731105.

  • [71] W. F. Clark, E. Cartier, and E. Y. Wu. “Hot Carrier Lifetime and Dielectric Breakdown in MOSFETs Processed with Deuterium”. In: 2001 6th International Symposium on Plasma and Process Induced Damage. May 2001, pp. 80–85. doi: 10.1109/PPID.2001.929984.

  • [72] Z. Chen, P. Ong, A. K. Mylin, V. Singh, and S. Chetlur. “Direct Evidence of Multiple Vibrational Excitation for the Si-H/D Bond Breaking in Metal-Oxide-Semiconductor Transistors”. In: Applied Physics Letters 81.17 (2002), pp. 3278–3280. doi: 10.1063/1.1516863.

  • [73] K. L. Brower. “Dissociation Kinetics of Hydrogen-Passivated (111) Si-SiO2 Interface Defects”. In: Phys. Rev. B 42 (6 Aug. 1990), pp. 3444–3453. doi: 10.1103/PhysRevB.42.3444.

  • [74] G. Boendgen and P. Saalfrank. “STM-Induced Desorption of Hydrogen from a Silicon Surface: An Open-System Density Matrix Study”. In: The Journal of Physical Chemistry B 102.41 (1998), pp. 8029–8035. doi: 10.1021/jp9823695.

  • [75] P. Guyot-Sionnest, P. H. Lin, and E. M. Hiller. “Vibrational Dynamics of the Si-H Stretching Modes of the Si(100)/H:2×1 Surface”. In: The Journal of Chemical Physics 102.10 (1995), p. 4269. doi: 10.1063/1.469474.

  • [76] S. Sakong, P. Kratzer, X. Han, T. Balgar, and E. Hasselbrink. “Isotope Effects in the Vibrational Lifetime of Hydrogen on Germanium(100): Theory and Experiment”. In: The Journal of Chemical Physics 131.12 (2009), p. 124502. doi: 10.1063/1.3224121.

  • [77] M. M. Albert and N. H. Tolk. “Absolute Total Cross Sections for Electron-Stimulated Desorption of Hydrogen and Deuterium from Silicon (111) Measured by Second Harmonic Generation”. In: Phys. Rev. B 63 (3 Dec. 2000), p. 035308. doi: 10.1103/PhysRevB.63.035308.

  • [78] P. Avouris, R. Walkup, A. Rossi, H. Akpati, P. Nordlander, T.-C. Shen, G. Abeln, and J. Lyding. “Breaking Individual Chemical Bonds via STM-Induced Excitations”. In: Surface Science 363.1 (1996). Dynamical Quantum Processes on Solid Surfaces, pp. 368–377. doi: 10.1016/0039-6028(96)00163-X.

  • [79] R. Biswas, Y.-P. Li, and B. C. Pan. “Enhanced Stability of Deuterium in Silicon”. In: Applied Physics Letters 72.26 (1998), pp. 3500–3502. doi: 10.1063/1.121640.

  • [80] K. Cheng, J. Lee, Z. Chen, S. A. Shah, K. Hess, J.-P. Leburton, and J. W. Lyding. “Fundamental Connection Between Hydrogen/Deuterium Desorption at Silicon Surfaces in Ultrahigh Vacuum and at Oxide/Silicon Interfaces in Metal-Oxide-Semiconductor Devices”. In: Journal of Vacuum Science 19.4 (2001), p. 1119. doi: 10.1116/1.1385687.

  • [81] E. Foley, a. Kam, J. Lyding, and P. Avouris. “Cryogenic UHV-STM Study of Hydrogen and Deuterium Desorption from Si (100)”. In: Physical Review Letters 80.100 (1998), pp. 1336–1339. doi: 10.1103/PhysRevLett.80.1336.

  • [82] J. W. Lyding, K. Hess, G. C. Abeln, D. S. Thompson, J. S. Moore, M. C. Hersam, E. T. Foley, J. Lee, S. T. Hwang, H. Choi, and Avouris. “Ultrahigh Vacuum-Scanning Tunneling Microscopy Nanofabrication and Hydrogen”. In: Appl. Surf. Sci. 130-132 (1998), pp. 221–230. doi: 10.1016/S0169-4332(98)00054-3.

  • [83] P. M. Lenahan. “What can Electron Paramagnetic Resonance Tell us About the Si/SiO2 System?” In: Journal of Vacuum Science 16.4 (1998), p. 2134. doi: 10.1116/1.590301.

  • [84] R. M. Lenahan, J. P. Campbell, A. Y. Kang, S. T. Liu, and R. A. Weimer. “Radiation-Induced Leakage Currents: Atomic Scale Mechanisms”. In: IEEE Transactions on Nuclear Science 48.6 (2001), pp. 2101–2106. doi: 10.1109/23.983179.

  • [85] P. M. Lenahan, T. D. Mishima, J. Jumper, T. N. Fogarty, and R. T. Wilkins. “Direct Experimental Evidence for Atomic Scale Structural Changes Involved in the Interface-Trap Transformation Process”. In: IEEE Transactions on Nuclear Science 48.6 (2001), pp. 2131–2135. doi: 10.1109/23.983184.

  • [86] P. M. Lenahan, T. D. Mishima, T. N. Fogarty, and R. Wilkins. “Atomic-Scale Processes Involved in Long-Term Changes in the Density of States Distribution at the Si/SiO2 Interface”. In: Applied Physics Letters 79.20 (2001), pp. 3266–3268. doi: 10.1063/1.1418261.

  • [87] P. M. Lenahan and S. E. Curry. “First Observation of the 29Si Hyperfine Spectra of Silicon Dangling Bond Centers in Silicon Nitride”. In: Applied Physics Letters 56.2 (1990), pp. 157–159. doi: 10.1063/1.103278.

  • [88] P. Lenahan. “Atomic Scale Defects Involved in MOS Reliability Problems”. In: Microelectronic Engineering 69.2-4 (Sept. 2003), pp. 173–181. doi: 10.1016/S0167-9317(03)00294-6.

  • [89] J. P. Campbell and P. M. Lenahan. “Density of States of Pb1 Si/SiO2 Interface Trap Centers”. In: Applied Physics Letters 80.11 (2002), pp. 1945–1947. doi: 10.1063/1.1461053.

  • [90] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan. “Direct Observation of the Structure of Defect Centers Involved in the Negative Bias Temperature Instability”. In: Applied Physics Letters 87.20 (2005), p. 204106. doi: 10.1063/1.2131197.

  • [91] A. Stesmans and V. V. Afanas’ev. “Electrical Activity of Interfacial Paramagnetic Defects in Thermal (100)Si/SiO2 ”. In: Physical Review B 57.16 (Apr. 1998), pp. 10030–10034. doi: 10.1103/PhysRevB.57.10030.

  • 29 [92] A. Stesmans, B. Nouwen, and V. V. Afanas’ev. “Pb1 Interface Defect in Thermal (100)Si/SiO2 : Si Hyperfine Interaction”. In: Physical Review B 58.23 (1998), pp. 15801–15809. doi: 10.1103/PhysRevB.58.15801.

  • [93] A. Stesmans, B. Nouwen, and V. Afanas’ev. “Interface Defect in Thermal Hyperfine Interaction”. In: Physical Review B - Condensed Matter and Materials Physics 58.23 (Dec. 1998), pp. 15801–15809. doi: 10.1103/PhysRevB.58.15801.

  • [94] A. Stesmans and V. V. Afanas’ev. “Electron Spin Resonance Features of Interface Defects in Thermal (100)Si/SiO2 ”. In: Journal of Applied Physics 83.5 (1998), pp. 2449–2457. doi: 10.1063/1.367005.

  • [95] V. V. Afanas’ev and A. Stesmans. “Thermally Induced Si(100)/SiO2 Interface Degradation in Poly-Si/SiO2 /Si Structures: Evidence for a Hydrogen-Stimulated Process”. In: Journal of The Electrochemical Society 148.5 (2001), G279–G282. doi: 10.1149/1.1362553.

  • [96] H. Raza. “Theoretical Study of Isolated Dangling Bonds, Dangling Bond Wires, and Dangling Bond Clusters on H:Si(001)-(2×1) Surface”. In: Phys. Rev. B 76 (4 July 2007), p. 045308. doi: 10.1103/PhysRevB.76.045308.

  • [97] A. Stesmans and V. V. Afanas’ev. “Undetectability of the Point Defect as an Interface State in Thermal”. In: Journal of Physics: Condensed Matter 10.1 (Jan. 1998), pp. L19–L25. doi: 10.1088/0953-8984/10/1/003.

  • [98] E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk. “Interface States and Electron Spin Resonance Centers in Thermally Oxidized (111) and (100) Silicon Wafers”. In: Journal of Applied Physics 52.2 (1981), pp. 879–884. doi: 10.1063/1.328771.

  • [99] P. Lenahan. “Deep Level Defects Involved in MOS Device Instabilities”. In: Microelectronics Reliability 47.6 (2007), pp. 890–898. doi: 10.1016/j.microrel.2006.10.016.

  • [100] J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln. “Nanoscale Patterning and Oxidation of H-Passivated Si(100)-2×1 Surfaces With an Ultrahigh Vauum Scanning Tunneling Microscope”. In: Applied Physics Letters 64.15 (1994), pp. 2010–2012. doi: 10.1063/1.111722.

  • [101] P. Saalfrank. “Quantum Dynamical Approach to Ultrafast Molecular Desorption from Surfaces”. In: Chemical Reviews 106.10 (2006), pp. 4116–4159. doi: 10.1021/cr0501691.

  • [102] L. Gao, P. P. Pal, T. Seideman, N. P. Guisinger, and J. R. Guest. “Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory”. In: Journal of Physical Chemistry Letters 7.3 (2016), pp. 486–494. doi: 10.1021/acs.jpclett.5b02471.

  • [103] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas. “Hot Electrons Do the Impossible: Plasmo-Induced Dissociation of H2 on Au”. In: Nano Letters 13.1 (2013), pp. 240–247. doi: 10.1021/nl303940z.

  • [104] P. Avouris, R. Walkup, A. Rossi, T.-C. Shen, G. Abeln, J. Tucker, and J. Lyding. “STM-Induced H Atom Desorption from Si(100): Isotope Effects and Site Selectivity”. In: Chemical Physics Letters 257.1 (1996), pp. 148–154. doi: 10.1016/0009-2614(96)00518-0.

  • [105] B. Persson and P. Avouris. “Local Bond Breaking via STM-Induced Excitations: The Role of Temperature”. In: Surface Science 390.1 (1997), pp. 45–54. doi: 10.1016/S0039-6028(97)00507-4.

  • [106] T. C. Shen. “Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms”. In: Science 268 (1995), pp. 1590–1592. doi: 10.1126/science.268.5217.1590.

  • [107] T. C. Shen and P. Avouris. “Electron Stimulated Desorption Induced by the Scanning Tunneling Microscope”. In: Surface Science 390 (1997), pp. 35–44. doi: 10.1016/S0039-6028(97)00506-2.

  • [108] T. C. Shen, J. A. Steckel, and K. D. Jordan. “Electron-Stimulated Bond Rearrangements on the H/Si(100)-3×1 Surface”. In: Surface Science 446.3 (2000), pp. 211–218. doi: 10.1016/S0039-6028(99)01147-4.

  • [109] J. Kanasaki, K. Ichihashi, and K. Tanimura. “Scanning Tunnelling Microscopy Study on Hydrogen Removal from Si(001)-(2×1): H Surface Excited with Low-Energy Electron Beams”. In: Surface Science 602.7 (2008), pp. 1322–1327. doi: 10.1016/j.susc.2007.12.046.

  • [110] C. Thirstrup, M. Sakurai, T. Nakayama, and M. Aono. “Atomic Scale Modifications of Hydrogen-Terminated Silicon 2×1 and 3×1 (001) Surfaces by Scanning Tunneling Microscope”. In: Surface Science 411.1-2 (1998), pp. 203–214. doi: 10.1016/S0039-6028(98)00364-1.

  • [111] X. Tong and R. A. Wolkow. “Electron-Induced H Atom Desorption Patterns Created with a Scanning Tunneling Microscope: Implications for Controlled Atomic-Scale Patterning on H-Si(100)”. In: Surface Science 600.16 (2006), pp. L199–L203. doi: 10.1016/j.susc.2006.06.038.

  • [112] A. J. Mayne and D. Riedel. “Electronic Control of Single-Molecule Dynamics”. In: Chemical reviews 106 (2006), pp. 4355–4378. doi: 10.1021/cr050177h.

  • [113] M. Sakurai, C. Thirstrup, T. Nakayama, and M. Aono. “Atomic Scale Extraction of Hydrogen Atoms Adsorbed on Si(001) with the Scanning Tunneling Microscope”. In: Applied Surface Science 121 (1997), pp. 107–110. doi: 10.1016/S0169-4332(97)00266-3.

  • [114] K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Hu, F. Perez-Murano, and F. Grey. “STM-Induced Hydrogen Desorption via a Hole Resonance”. In: Physical Review Letters 80.12 (1998), pp. 2618–2621. doi: 10.1103/PhysRevLett.80.2618.

  • [115] K. Stokbro, B. Y.-K. Hu, C. Thirstrup, and X. C. Xie. “First-Principles Theory of Inelastic Currents in a Scanning Tunneling Microscope”. In: Phys. Rev. B 58 (12 Sept. 1998), pp. 8038–8041. doi: 10.1103/PhysRevB.58.8038.

  • [116] N. Itoh and A. M. Stoneham. “Treatment of Semiconductor Surfaces by Laser-Induced Electronic Excitation”. In: J. Phys. Condens. Matter 13.26 (2001), R489. doi: 10.1088/0953-8984/13/26/201.

  • [117] T. Vondrak and X.-Y. Zhu. “Dissociation of a Surface Bond by Direct Optical Excitation: H-Si(100)”. In: Physical Review Letters 82.9 (1999), pp. 1967–1970. doi: 10.1103/PhysRevLett.82.1967.

  • [118] T. Vondrak and X.-Y. Zhu. “Direct Photodesorption of Atomic Hydrogen from Si(100) at 157 nm: Experiment and Simulation”. In: The Journal of Physical Chemistry B 103.23 (1999), pp. 4892–4899. doi: 10.1021/jp990636g.

  • [119] L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin. “Atomic-Scale Desorption of H Atoms from the Si(100)-2×1:H Surface: Inelastic Electron Interactions”. In: Phys. Rev. B 68 (3 July 2003), p. 035303. doi: 10.1103/PhysRevB.68.035303.

  • [120] A. J. Mayne, D. Riedel, G. Comtet, and G. Dujardin. “Atomic-Scale Studies of Hydrogenated Semiconductor Surfaces”. In: Progress in Surface Science 81.1 (2006), pp. 1–51. doi: 10.1016/j.progsurf.2006.01.001.

  • [121] K. Morgenstern, N. Lorente, and K.-H. Rieder. “Controlled Manipulation of Single Atoms and Small Molecules using the Scanning Tunnelling Microscope”. In: physica status solidi (b) 250.9 (2013), pp. 1671–1751. doi: 10.1002/pssb.201248392.

  • [122] R. E. Palmer and P. J. Rous. “Resonances in Electron Scattering by Molecules on Surfaces”. In: Rev. Mod. Phys. 64 (2 Apr. 1992), pp. 383–440. doi: 10.1103/RevModPhys.64.383.

  • [123] J. Gadzuk, L. Richter, S. Buntin, D. King, and R. Cavanagh. “Laser-Excited Hot-Electron Induced Desorption: A Theoretical Model Applied to NO/Pt(111)”. In: Surface Science 235.2 (1990), pp. 317–333. doi: 10.1016/0039-6028(90)90807-K.

  • [124] F. Weik, A. de Meijere, and E. Hasselbrink. “Wavelength Dependence of the Photochemistry of O2 on Pd(111) and the Role of Hot Electron Cascades”. In: The Journal of Chemical Physics 99.1 (1993), pp. 682–694. doi: 10.1063/1.465741.

  • [125] G. Dujardin, F. Rose, J. Tribollet, and A. J. Mayne. “Inelastic Transport of Tunnel and Field-Emitted Electrons through a Single Atom”. In: Phys. Rev. B 63 (8 Feb. 2001), p. 081305. doi: 10.1103/PhysRevB.63.081305.

  • [126] T. Tewksbury and H.-S. Lee. “Characterization, Modeling, and Minimization of Transient Threshold Voltage Shifts in MOSFETs”. In: IEEE Journal of Solid-State Circuits 29.3 (1994), pp. 239–252. doi: 10.1109/4.278345.

  • [127] A. Lelis, H. Boesch, T. Oldham, and F. McLean. “Reversibility of Trapped Hole Annealing”. In: IEEE Transactions on Nuclear Science 35.6 (1988), pp. 1186–1191. doi: 10.1109/23.25437.

  • [128] A. Lelis and T. Oldham. “Time Dependence of Switching Oxide Traps”. In: IEEE Transactions on Nuclear Science 41.6 (Dec. 1994), pp. 1835–1843. doi: 10.1109/23.340515.

  • [129] H. Eyring. “The Activated Complex in Chemical Reactions”. In: The Journal of Chemical Physics 3.2 (1935), pp. 107–115. doi: 10.1063/1.1749604.

  • [130] M. G. Evans and M. Polanyi. “Some Applications of the Transition State Method to the Calculation of Reaction Velocities, especially in Solution”. In: Trans. Faraday Soc. 31 (0 1935), pp. 875–894. doi: 10.1039/TF9353100875.

  • [131] J. L. Bao and D. G. Truhlar. “Variational Transition State Theory: Theoretical Framework and Recent Developments”. In: Chem. Soc. Rev. 46 (24 2017), pp. 7548–7596. doi: 10.1039/C7CS00602K.

  • [132] H. Mökkönen, T. Ikonen, T. Ala-Nissila, and H. Jónsson. “Transition State Theory Approach to Polymer Escape from a One Dimensional Potential Well”. In: The Journal of Chemical Physics 142.22 (2015), p. 224906. doi: 10.1063/1.4921959.

  • [133] H. Feng, K. Zhang, and J. Wang. “Non-Equilibrium Transition State Rate Theory”. In: Chem. Sci. 5 (10 2014), pp. 3761–3769. doi: 10.1039/C4SC00831F.

  • [134] K. Huang and A. Rhys. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 204.1078 (1950), pp. 406–423. issn: 0080-4630. doi: 10.1098/rspa.1950.0184.

  • [135] R. Kubo. “Thermal Ionization of Trapped Electrons”. In: Phys. Rev. 86 (6 June 1952), pp. 929–937. doi: 10.1103/PhysRev.86.929.

  • [136] R. Kubo and Y. Toyozawa. “Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal”. In: Progress of Theoretical Physics 13.2 (Feb. 1955), pp. 160–182. doi: 10.1143/PTP.13.160.

  • [137] H. Gummel and M. Lax. “Thermal Capture of Electrons in Silicon”. In: Annals of Physics 2.1 (1957), pp. 28–56. issn: 0003-4916. doi: 10.1016/0003-4916(57)90034-9.

  • [138] J. Collins. “Non-Radiative Processes in Crystals and in Nanocrystals”. In: ECS Journal of Solid State Science and Technology 5.1 (Oct. 2015), R3170–R3184. doi: 10.1149/2.0221601jss.

  • [139] P. A. M. Dirac. “Note on Exchange Phenomena in the Thomas Atom”. In: Mathematical Proceedings of the Cambridge Philosophical Society 26.3 (1930), pp. 376–385. doi: 10.1017/S0305004100016108.

  • [140] J. Franck and E. G. Dymond. “Elementary Processes of Photochemical Reactions”. In: Trans. Faraday Soc. 21 (2 1926), pp. 536–542. doi: 10.1039/TF9262100536.

  • [141] E. Condon. “A Theory of Intensity Distribution in Band Systems”. In: Phys. Rev. 28 (6 Dec. 1926), pp. 1182–1201. doi: 10.1103/PhysRev.28.1182.

  • [142] M. Lax. “The Franck-Condon Principle and Its Application to Crystals”. In: The Journal of Chemical Physics 20.11 (1952), pp. 1752–1760. doi: 10.1063/1.1700283.

  • [143] J. H. Zheng, H. S. Tan, and S. C. Ng. “Theory of Non-Radiative Capture of Carriers by Multiphonon Processes for Deep Centres in Semiconductors”. In: Journal of Physics: Condensed Matter 6.9 (1994), p. 1695. doi: 10.1088/0953-8984/6/9/012.

  • [144] F. Schanovsky. “Atomistic Modeling in the Context of the Bias Temperature Instability”. PhD thesis. E360, 2013.

  • [145] P. Schmidt. “Computationally Efficient Recurrence Relations for One-Dimensional Franck–Condon Overlap Integrals”. In: Molecular Physics 108.11 (2010), pp. 1513–1529. doi: 10.1080/00268971003762142.

  • [146] G. Rzepa. “Efficient Phyical Modeling of Bias Temperature Instability”. PhD thesis. E360, 2018.

  • [147] R. A. Marcus. “Electron Transfer Reactions in Chemistry. Theory and Experiment”. In: Rev. Mod. Phys. 65 (3 July 1993), pp. 599–610. doi: 10.1103/RevModPhys.65.599.

  • [148] G. D. Barmparis, Y. S. Puzyrev, X.-G. Zhang, and S. T. Pantelides. “Theory of Inelastic Multiphonon Scattering and Carrier Capture by Defects in Semiconductors: Application to Capture Cross Sections”. In: Phys. Rev. B 92 (21 Dec. 2015), p. 214111. doi: 10.1103/PhysRevB.92.214111.

  • [149] L. Shi, K. Xu, and L.-W. Wang. “Comparative Study of Ab Initio Nonradiative Recombination Rate Calculations under Different Formalisms”. In: Phys. Rev. B 91 (20 May 2015), p. 205315. doi: 10.1103/PhysRevB.91.205315.

  • [150] G. Nan, X. Yang, L. Wang, Z. Shuai, and Y. Zhao. “Nuclear Tunneling Effects of Charge Transport in Rubrene, Tetracene, and Pentacene”. In: Phys. Rev. B 79 (11 Mar. 2009), p. 115203. doi: 10.1103/PhysRevB.79.115203.

  • [151] A. Alkauskas, Q. Yan, and C. G. Van de Walle. “First-Principles Theory of Nonradiative Carrier Capture via Multiphonon Emission”. In: Phys. Rev. B 90 (7 Aug. 2014), p. 075202. doi: 10.1103/PhysRevB.90.075202.

  • [152] L. Shi and L.-W. Wang. “Ab Initio Calculations of Deep-Level Carrier Nonradiative Recombination Rates in Bulk Semiconductors”. In: Phys. Rev. Lett. 109 (24 Dec. 2012), p. 245501. doi: 10.1103/PhysRevLett.109.245501.

  • [153] Y.-Y. Liu, F. Liu, R. Wang, J.-W. Luo, X. Jiang, R. Huang, S.-S. Li, and L.-W. Wang. “Characterizing the Charge Trapping across Crystalline and Amorphous Si/SiO2 /HfO2 Stacks from First-Principle Calculations”. In: Phys. Rev. Applied 12 (6 Dec. 2019), p. 064012. doi: 10.1103/PhysRevApplied.12.064012.

  • [154] Y.-Y. Liu, F. Zheng, X. Jiang, J.-W. Luo, S.-S. Li, and L.-W. Wang. “Ab Initio Investigation of Charge Trapping Across the Crystalline-Si-Amorphous-SiO2 Interface”. In: Phys. Rev. Applied 11 (4 Apr. 2019), p. 044058. doi: 10.1103/PhysRevApplied.11.044058.

  • [155] J. Strand, M. Kaviani, D. Gao, A.-M. El-Sayed, V. V. Afanas’ev, and A. L. Shluger. “Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges”. In: Journal of Physics: Condensed Matter 30.23 (May 2018), p. 233001. doi: 10.1088/1361-648x/aac005.

  • [156] K. P. McKenna and J. Blumberger. “Crossover From Incoherent to Coherent Electron Tunneling Between Defects in MgO”. In: Phys. Rev. B 86 (24 Dec. 2012), p. 245110. doi: 10.1103/PhysRevB.86.245110.

  • [157] K. McKenna and J. Blumberger. “First Principles Modeling of Electron Tunneling Between Defects in m-HfO2 ”. In: Microelectronic Engineering 147 (2015). Insulating Films on Semiconductors 2015, pp. 235–238. issn: 0167-9317. doi: 10.1016/j.mee.2015.04.009.

  • [158] J. Blumberger and K. P. McKenna. “Constrained Density Functional Theory Applied to Electron Tunnelling Between Defects in MgO”. In: Phys. Chem. Chem. Phys. 15 (6 2013), pp. 2184–2196. doi: 10.1039/C2CP42537H.

  • [159] M. Zelený, J. Hegedüs, A. S. Foster, D. A. Drabold, S. R. Elliott, and R. M. Nieminen. “Ab Initio Study of Cu Diffusion in α-Cristobalite”. In: New Journal of Physics 14.11 (Nov. 2012), p. 113029. doi: 10.1088/1367-2630/14/11/113029.

  • [160] A.-M. El-Sayed, M. B. Watkins, T. Grasser, and A. L. Shluger. “Effect of Electric Field on Migration of Defects in Oxides: Vacancies and Interstitials in Bulk MgO”. In: Physical Review B 98.6 (Aug. 2018), p. 064102. doi: 10.1103/PhysRevB.98.064102.

  • [161] T. E. Markland and M. Ceriotti. “Nuclear Quantum Effects Enter the Mainstream”. In: Nature Reviews Chemistry 2.3 (2018), p. 0109. doi: 10.1038/s41570-017-0109.

  • [162] J. O. Richardson and S. C. Althorpe. “Ring-Polymer Molecular Dynamics Rate-Theory in the Deep-Tunneling Regime: Connection with Semiclassical Instanton Theory”. In: The Journal of Chemical Physics 131.21 (2009), p. 214106. doi: 10.1063/1.3267318.

  • [163] J. O. Richardson and M. Thoss. “Communication: Nonadiabatic Ring-Polymer Molecular Dynamics”. In: The Journal of Chemical Physics 139.3 (2013), p. 031102. doi: 10.1063/1.4816124.

  • [164] J. O. Richardson, C. Pérez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel, D. J. Wales, B. H. Pate, and S. C. Althorpe. “Concerted Hydrogen-Bond Breaking by Quantum Tunneling in the Water Hexamer Prism”. In: Science 351.6279 (2016), pp. 1310–1313. doi: 10.1126/science.aae0012.

  • [165] I. R. Craig and D. E. Manolopoulos. “Quantum Statistics and Classical Mechanics: Real Time Correlation Functions from Ring Polymer Molecular Dynamics”. In: The Journal of Chemical Physics 121.8 (2004), pp. 3368–3373. doi: 10.1063/1.1777575.

  • [166] F. Schanovsky, W. Gös, and T. Grasser. “An Advanced Description of Oxide Traps in MOS Transistors and its Relation to DFT”. In: Journal of Computational Electronics 9.3-4 (2010), pp. 135–140. doi: 10.1007/s10825-010-0323-x.

  • 0 [167] K. L. Yip and W. B. Fowler. “Electronic Structure of E1 Centers in SiO2 ”. In: Phys. Rev. B 11 (6 Mar. 1975), pp. 2327–2338. doi: 10.1103/PhysRevB.11.2327.

  • [168] E. P. O’Reilly and J. Robertson. “Theory of Defects in Vitreous Silicon Dioxide”. In: Phys. Rev. B 27 (6 Mar. 1983), pp. 3780–3795. doi: 10.1103/PhysRevB.27.3780.

  • 0 [169] J. K. Rudra, W. B. Fowler, and F. J. Feigl. “Model for the E2 Center in Alpha Quartz”. In: Phys. Rev. Lett. 55 (23 Dec. 1985), pp. 2614–2617. doi: 10.1103/PhysRevLett.55.2614.

  • [170] P. M. Lenahan, J. P. Campbell, A. T. Krishnan, and S. Krishnan. “A Model for NBTI in Nitrided Oxide MOSFETs Which Does Not Involve Hydrogen or Diffusion”. In: IEEE Transactions on Device and Materials Reliability 11.2 (June 2011), pp. 219–226. doi: 10.1109/TDMR.2010.2063031.

  • [171] T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, and H. Hutter. “Impact of Hydrogen on Recoverable and Permanent Damage Following Negative Bias Temperature Stress”. In: 2010 IEEE International Reliability Physics Symposium. May 2010, pp. 1063–1068. doi: 10.1109/IRPS.2010.5488672.

  • [172] A. T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, and S. Krishnan. “Negative Bias Temperature Instability Mechanism: The Role of Molecular Hydrogen”. In: Applied Physics Letters 88.15 (2006), p. 153518. doi: 10.1063/1.2191828.

  • [173] A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’Ev, and A. L. Shluger. “Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide”. In: Physical Review Letters 114.11 (2015), pp. 115503-1–115503-5. doi: 10.1103/PhysRevLett.114.115503.

  • [174] A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V. V. Afanas’ev, and A. L. Shluger. “Theoretical Models of Hydrogen-Induced Defects in Amorphous Silicon Dioxide”. In: Physical Review B 92.1 (July 2015), p. 014107. doi: 10.1103/PhysRevB.92.014107.

  • [175] A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’Ev, and A. L. Shluger. “Hole Trapping at Hydrogenic Defects in Amorphous Silicon Dioxide”. In: Microelectronic Engineering 147 (2015), pp. 141–144. doi: 10.1016/j.mee.2015.04.073.

  • [176] S. Ling, A.-M. El-Sayed, F. Lopez-Gejo, M. B. Watkins, V. V. AfanasÉv, and A. L. Shluger. “A Computational Study of Si-H Bonds as Precursors for Neutral E0 Centres in Amorphous Silica and at the Si/SiO2 Interface”. In: Microelectronic Engineering 109 (Sept. 2013), pp. 310–313. doi: 10.1016/j.mee.2013.03.028.

  • [177] L. Gerrer, S. Ling, S. M. Amoroso, P. Asenov, A. L. Shluger, and A. Asenov. “From Atoms to Product Reliability: Toward a Generalized Multiscale Simulation Approach”. In: Journal of Computational Electronics 12.4 (Dec. 2013), pp. 638–650. doi: 10.1007/s10825-013-0513-4.

  • [178] U. Khalilov, E. C. Neyts, G. Pourtois, and A. C. T. van Duin. “Can We Control the Thickness of Ultrathin Silica Layers by Hyperthermal Silicon Oxidation at Room Temperature?” In: The Journal of Physical Chemistry C 115.50 (Dec. 2011), pp. 24839–24848. doi: 10.1021/jp2082566.

  • [179] U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts. “New Mechanism for Oxidation of Native Silicon Oxide”. In: The Journal of Physical Chemistry C 117.19 (May 2013), pp. 9819–9825. doi: 10.1021/jp400433u.

  • [180] M. H. Evans, M. Caussanel, R. D. Schrimpf, and S. T. Pantelides. “First-Principles Calculations of Mobilities in Ultrathin Double-Gate MOSFETs”. In: Journal of Computational Electronics 6.1-3 (Apr. 2007), pp. 85–88. doi: 10.1007/s10825-006-0070-1.

  • [181] R. Buczko, S. J. Pennycook, and S. T. Pantelides. “Bonding Arrangements at the Si-SiO2 and SiC-SiO2 Interfaces and a Possible Origin of their Contrasting Properties”. In: Physical Review Letters 84.5 (Jan. 2000), pp. 943–946. doi: 10.1103/PhysRevLett.84.943.

  • [182] E. Kobeda and E. A. Irene. “Intrinsic SiO2 Film Stress Measurements on Thermally Oxidized Si”. In: Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 5.1 (1987), pp. 15–19. doi: 10.1116/1.583853.

  • [183] E. P. EerNisse. “Stress in Thermal SiO2 During Growth”. In: Applied Physics Letters 35.1 (1979), pp. 8–10. doi: 10.1063/1.90905.

  • [184] H. W. Conru. “Measuring Small-Area Si/SiO2 Interface Stress with SEM”. In: Journal of Applied Physics 47.5 (1976), pp. 2079–2081. doi: 10.1063/1.322850.

  • [185] R. J. Jaccodine and W. A. Schlegel. “Measurement of Strains at Si-SiO2 Interface”. In: Journal of Applied Physics 37.6 (1966), pp. 2429–2434. doi: 10.1063/1.1708831.

  • [186] S. C. H. Lin and I. Pugacz-Muraszkiewicz. “Local Stress Measurement in Thin Thermal SiO2 Films on Si Substrates”. In: Journal of Applied Physics 43.1 (1972), pp. 119–125. doi: 10.1063/1.1660794.

  • [187] Y. Sugita, S. Watanabe, N. Awaji, and S. Komiya. “Structural Fluctuation of SiO2 Network at the Interface with Si”. In: Applied Surface Science 100-101 (1996), pp. 268–271. issn: 0169-4332. doi: 10.1016/0169-4332(96)00302-9.

  • [188] S. Miyazaki, H. Nishimura, M. Fukuda, L. Ley, and J. Ristein. “Structure and Electronic States of Ultrathin SiO2 Thermally Grown on Si(100) and Si(111) Surfaces”. In: Applied Surface Science 113-114 (1997). Proceedings of the Eighth International Conference on Solid Films and Surfaces, pp. 585–589. doi: 10.1016/S0169-4332(96)00805-7.

  • [189] K. Hirose, H. Nohira, T. Koike, K. Sakano, and T. Hattori. “Structural Transition Layer at SiO2 /Si Interfaces”. In: Phys. Rev. B 59 (8 Feb. 1999), pp. 5617–5621. doi: 10.1103/PhysRevB.59.5617.

  • [190] A. C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel. “Characterization and Production Metrology of Thin Transistor Gate Oxide Films”. In: Materials Science in Semiconductor Processing 2.2 (1999), pp. 103–147. issn: 1369-8001. doi: 10.1016/S1369-8001(99)00009-8.

  • [191] N. Miyata, H. Watanabe, and M. Ichikawa. “Atomic-Scale Structure of SiO2 /Si Interface Formed by Furnace Oxidation”. In: Phys. Rev. B 58 (20 Nov. 1998), pp. 13670–13676. doi: 10.1103/PhysRevB.58.13670.

  • [192] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp. “The Electronic Structure at the Atomic Scale of Ultrathin Gate Oxides”. In: Nature 399.6738 (June 1999), pp. 758–761. doi: 10.1038/21602.

  • [193] D. A. Muller and G. D. Wilk. “Atomic Scale Measurements of the Interfacial Electronic Structure and Chemistry of Zirconium Silicate Gate Dielectrics”. In: Applied Physics Letters 79.25 (Dec. 2001), pp. 4195–4197. doi: 10.1063/1.1426268.

  • [194] Y. Yamashita, S. Yamamoto, K. Mukai, J. Yoshinobu, Y. Harada, T. Tokushima, T. Takeuchi, Y. Takata, S. Shin, K. Akagi, and S. Tsuneyuki. “Direct Observation of Site-Specific Valence Electronic Structure at the SiO2 /Si Interface”. In: Phys. Rev. B 73 (4 Jan. 2006), p. 045336. doi: 10.1103/PhysRevB.73.045336.

  • [195] C. Kaneta, T. Yamasaki, T. Uchiyama, T. Uda, and K. Terakura. “Structure and Electronic Property of Si(100)/SiO2 Interface”. In: Microelectronic Engineering 48.1 (1999). Insulating Films on Semiconductors, pp. 117–120. doi: 10.1016/S0167-9317(99)00351-2.

  • [196] J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, M. Oshima, N. Hirashita, M. Nywa, A. Toriumi, and A. Kakizaki. “Chemical Structure of the Ultrathin SiO2 /Si (100) Interface: An Angle-Resolved Si 2p Photoemission Study”. In: Phys. Rev. B 63 (20 Apr. 2001), p. 205310. doi: 10.1103/PhysRevB.63.205310.

  • [197] J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit. “A Reactive Molecular Dynamics Simulation of the Silica-Water Interface”. In: The Journal of Chemical Physics 132.17 (May 2010), p. 174704. doi: 10.1063/1.3407433.

  • [198] H. Aktulga, J. Fogarty, S. Pandit, and A. Grama. “Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques”. In: Parallel Computing 38.4-5 (Apr. 2012), pp. 245–259. doi: 10.1016/j.parco.2011.08.005.

  • [199] Y. Yu, B. Wang, M. Wang, G. Sant, and M. Bauchy. “Revisiting Silica with ReaxFF: Towards Improved Predictions of Glass Structure and Properties via Reactive Molecular Dynamics”. In: Journal of Non-Crystalline Solids 443 (2016), pp. 148–154. doi: 10.1016/j.jnoncrysol.2016.03.026.

  • [200] C. Freysoldt and J. Neugebauer. “First-Principles Calculations for Charged Defects at Surfaces, Interfaces, and Two-Dimensional Materials in the Presence of Electric Fields”. In: Phys. Rev. B 97 (20 May 2018), p. 205425. doi: 10.1103/PhysRevB.97.205425.

  • [201] A. Stesmans. “Dissociation Kinetics of Hydrogen-Passivated Pb Defects at the (111)Si/SiO2 Interface”. In: Phys. Rev. B 61 (12 Mar. 2000), pp. 8393–8403. doi: 10.1103/PhysRevB.61.8393.

  • [202] B. Tuttle and J. B. Adams. “Structure, Dissociation, and the Vibrational Signatures of Hydrogen Clusters in Amorphous Silicon”. In: Physical Review B 56.8 (Aug. 1997), pp. 4565–4572. doi: 10.1103/PhysRevB.56.4565.

  • [203] B. Tuttle and C. G. Van de Walle. “Structure, Energetics, and Vibrational Properties of Si-H Bond Dissociation in Silicon”. In: Physical Review B 59.20 (May 1999), pp. 12884–12889. doi: 10.1103/PhysRevB.59.12884.

  • [204] B. Tuttle. “Hydrogen and Pb Defects at the Si-SiO2 Interface: An Ab Initio Cluster Study”. In: Phys. Rev. B 60 (4 July 1999), pp. 2631–2637. doi: 10.1103/PhysRevB.60.2631.

  • [205] B. Tuttle. “Energetics and Diffusion of Hydrogen in SiO2 ”. In: Phys. Rev. B 61 (7 Feb. 2000), pp. 4417–4420. doi: 10.1103/PhysRevB.61.4417.

  • [206] B. R. Tuttle, D. R. Hughart, R. D. Schrimpf, D. M. Fleetwood, and S. T. Pantelides. “Defect Interactions of H2 in SiO2 : Implications for ELDRS and Latent Interface Trap Buildup”. In: IEEE Transactions on Nuclear Science 57.6 (Dec. 2010), pp. 3046–3053. doi: 10.1109/TNS.2010.2086076.

  • [207] C. G. Van De Walle. “Energies of Various Configurations of Hydrogen in Silicon”. In: Physical Review B 49.7 (Feb. 1994), pp. 4579–4585. doi: 10.1103/PhysRevB.49.4579.

  • [208] “Structure, Energetics, and Dissociation of Si-H Bonds at Dangling Bonds in Silicon”. In: Physical Review B 49.20 (May 1994), pp. 14766–14769. doi: 10.1103/PhysRevB.49.14766.

  • [209] C. Van de Walle and B. Tuttle. “Microscopic Theory of Hydrogen in Silicon Devices”. In: IEEE Transactions on Electron Devices 47.10 (2000), pp. 1779–1786. doi: 10.1109/16.870547.

  • [210] B. Tuttle, K. Hess, and L. Register. “Hydrogen-Related Defect Creation at the Si(100)-SiO2 Interface of Metal-Oxide-Semiconductor Field Effect Transistors During Hot Electron Stress”. In: Superlattices and Microstructures 27.5 (2000), pp. 441–445. doi: 10.1006/spmi.2000.0859.

  • [211] B. R. Tuttle, W. McMahon, and K. Hess. “Hydrogen and Hot Electron Defect Creation at the Si(100)/SiO2 Interface of Metal-Oxide-Semiconductor Field Effect Transistors”. In: Superlattices and Microstructures 27.2 (2000), pp. 229–233. doi: 10.1006/spmi.1999.0804.

  • [212] A. A. Bonapasta. “Theory of H Sites in Undoped Crystalline Semiconductors”. In: Physica B: Condensed Matter 170.1-4 (Apr. 1991), pp. 168–180. doi: 10.1016/0921-4526(91)90120-4.

  • [213] N. M. Johnson, C. Herring, and C. G. Van de Walle. “Inverted Order of Acceptor and Donor Levels of Monatomic Hydrogen in Silicon”. In: Physical Review Letters 73.1 (July 1994), pp. 130–133. doi: 10.1103/PhysRevLett.73.130.

  • [214] N. H. Nickel, G. B. Anderson, N. M. Johnson, and J. Walker. “Nucleation of Hydrogen-Induced Platelets in Silicon”. In: Physical Review B 62.12 (Sept. 2000), pp. 8012–8015. doi: 10.1103/PhysRevB.62.8012.

  • [215] R. Elber and M. Karplus. “A Method for Determining Reaction Paths in Large Molecules: Application to Myoglobin”. In: Chemical Physics Letters 139.5 (1987), pp. 375–380. doi: 10.1016/0009-2614(87)80576-6.

  • [216] G. Henkelman, B. P. Uberuaga, and H. Jónsson. “A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths”. In: The Journal of Chemical Physics 113.22 (Dec. 2000), pp. 9901–9904. doi: 10.1063/1.1329672.

  • [217] G. Henkelman and H. Jónsson. “A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using only First Derivatives”. In: The Journal of Chemical Physics 111.15 (1999), pp. 7010–7022. doi: 10.1063/1.480097.

  • [218] A. Barducci, G. Bussi, and M. Parrinello. “Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method”. In: Phys. Rev. Lett. 100 (2 Jan. 2008), p. 020603. doi: 10.1103/PhysRevLett.100.020603.

  • [219] J. F. Dama, M. Parrinello, and G. A. Voth. “Well-Tempered Metadynamics Converges Asymptotically”. In: Phys. Rev. Lett. 112 (24 June 2014), p. 240602. doi: 10.1103/PhysRevLett.112.240602.

  • [220] G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi. “PLUMED 2: New Feathers for an Old Bird”. In: Computer Physics Communications 185.2 (Feb. 2014), pp. 604–613. doi: 10.1016/j.cpc.2013.09.018.

  • [221] A. Stesmans. “Revision of H2 Passivation of Pb Interface Defects in Standard (111)Si/SiO2 ”. In: Applied Physics Letters 68.19 (May 1996), pp. 2723–2725. doi: 10.1063/1.115577.

  • [222] K. L. Brower. “Kinetics of H2 Passivation of Pb Centers at the (111) Si-SiO2 Interface”. In: Physical Review B 38.14 (Nov. 1988), pp. 9657–9666. doi: 10.1103/PhysRevB.38.9657.

  • [223] G. Henkelman, A. Arnaldsson, and H. Jónsson. “A Fast and Robust Algorithm for Bader Decomposition of Charge Density”. In: Computational Materials Science 36.3 (June 2006), pp. 354–360. doi: 10.1016/j.commatsci.2005.04.010.

  • [224] W. Tang, E. Sanville, and G. Henkelman. “A Grid-Based Bader Analysis Algorithm Without Lattice Bias”. In: Journal of Physics: Condensed Matter 21.8 (Feb. 2009), p. 084204. doi: 10.1088/0953-8984/21/8/084204.

  • [225] M. Yu and D. R. Trinkle. “Accurate and Efficient Algorithm for Bader Charge Integration”. In: The Journal of Chemical Physics 134.6 (Feb. 2011), p. 064111. doi: 10.1063/1.3553716.

  • [226] M. Houssa, J. L. Autran, A. Stesmans, and M. M. Heyns. “Model for Interface Defect and Positive Charge Generation in Ultrathin SiO2 /ZrO2 Gate Dielectric stacks”. In: Applied Physics Letters 81.4 (July 2002), pp. 709–711. doi: 10.1063/1.1496146.

  • [227] M. Houssa, J. Autran, M. Heyns, and A. Stesmans. “Model for Defect Generation at the (100)Si/SiO2 Interface During Electron Injection in MOS Structures”. In: Applied Surface Science 212-213.SPEC. (May 2003), pp. 749–752. doi: 10.1016/S0169-4332(03)00042-4.

  • [228] R. Biswas and Y.-P. Li. “Hydrogen Flip Model for Light-Induced Changes of Amorphous Silicon”. In: Physical Review Letters 82.12 (Mar. 1999), pp. 2512–2515. doi: 10.1103/PhysRevLett.82.2512.

  • [229] R. D. King-Smith and D. Vanderbilt. “Theory of Polarization of Crystalline Solids”. In: Physical Review B 47.3 (Jan. 1993), pp. 1651–1654. doi: 10.1103/PhysRevB.47.1651.

  • [230] “Macroscopic Polarization in Crystalline Dielectrics: The Geometric Phase Approach”. In: Reviews of Modern Physics 66.3 (July 1994), pp. 899–915. doi: 10.1103/RevModPhys.66.899.

  • [231] I. Souza, J. Íñiguez, and D. Vanderbilt. “First-Principles Approach to Insulators in Finite Electric Fields”. In: Physical Review Letters 89.11 (Aug. 2002), p. 117602. doi: 10.1103/PhysRevLett.89.117602.

  • [232] N. A. Spaldin. “A Beginner’s Guide to the Modern Theory of Polarization”. In: Journal of Solid State Chemistry 195 (Nov. 2012), pp. 2–10. doi: 10.1016/j.jssc.2012.05.010.

  • [233] “Ab Initio Molecular Dynamics in a Finite Homogeneous Electric Field”. In: Physical Review Letters 89.15 (Sept. 2002), p. 157602. doi: 10.1103/PhysRevLett.89.157602.

  • [234] D. Vanderbilt and R. D. King-Smith. “Electric Polarization as a Bulk Quantity and its Relation to Surface Charge”. In: Physical Review B 48.7 (Aug. 1993), pp. 4442–4455. doi: 10.1103/PhysRevB.48.4442.

  • [235] C. Zhang, J. Hutter, and M. Sprik. “Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water”. In: The Journal of Physical Chemistry Letters 7.14 (July 2016), pp. 2696–2701. doi: 10.1021/acs.jpclett.6b01127.

  • [236] K. Stokbro, U. J. Quaade, R. Lin, C. Thirstrup, and F. Grey. “Electronic Mechanism of STM-Induced Diffusion of Hydrogen on Si(100)”. In: Faraday Discuss. 117 (0 2000), pp. 231–240. doi: 10.1039/B003179H.

  • [237] A. Abe, K. Yamashita, and P. Saalfrank. “STM and Laser-Driven Atom Switch: An Open-System Density-Matrix Study of H/Si(100)”. In: Phys. Rev. B 67 (23 June 2003), p. 235411. doi: 10.1103/PhysRevB.67.235411.

  • [238] Q. Wu and T. Van Voorhis. “Extracting Electron Transfer Coupling Elements from Constrained Density Functional Theory”. In: The Journal of Chemical Physics 125.16 (2006), p. 164105. doi: 10.1063/1.2360263.

  • [239] B. Kaduk, T. Kowalczyk, and T. Van Voorhis. “Constrained Density Functional Theory”. In: Chemical Reviews 112.1 (2012), pp. 321–370. doi: 10.1021/cr200148b.

  • [240] N. Holmberg and K. Laasonen. “Efficient Constrained Density Functional Theory Implementation for Simulation of Condensed Phase Electron Transfer Reactions”. In: Journal of Chemical Theory and Computation 13.2 (2017), pp. 587–601. doi: 10.1021/acs.jctc.6b01085.

  • [241] N. Holmberg and K. Laasonen. “Diabatic Model for Electrochemical Hydrogen Evolution Based on Constrained DFT Configuration Interaction”. In: The Journal of Chemical Physics 149.10 (2018), p. 104702. doi: 10.1063/1.5038959.

  • [242] A.-M. El-Sayed, M. B. Watkins, V. V. Afanas’ev, and A. L. Shluger. “Nature of Intrinsic and Extrinsic Electron Trapping in SiO2 ”. In: Phys. Rev. B 89 (12 Mar. 2014), p. 125201. doi: 10.1103/PhysRevB.89.125201.

  • [243] A. Stesmans. “Passivation of Pb0 and Pb1 Interface Defects in Thermal (100) Si/SiO2 with Molecular Hydrogen”. In: Applied Physics Letters 68.15 (1996), pp. 2076–2078. doi: 10.1063/1.116308.

  • [244] A. Stesmans. “Interaction of Pb Defects at the (111)Si/SiO2 Interface with Molecular Hydrogen: Simultaneous Action of Passivation and Dissociation”. In: Journal of Applied Physics 88.1 (July 2000), pp. 489–497. doi: 10.1063/1.373684.

  • [245] A. Stesmans. “Influence of Interface Relaxation on Passivation Kinetics in 2 2 of Coordination Pb Defects at the (111)Si/SiO2 Interface Revealed by Electron Spin Resonance”. In: Journal of Applied Physics 92.3 (2002), pp. 1317–1328. doi: 10.1063/1.1482427.

  • [246] E. Cartier, J. H. Stathis, and D. A. Buchanan. “Passivation and Depassivation of Silicon Dangling Bonds at the Si/SiO2 Interface by Atomic Hydrogen”. In: Applied Physics Letters 63.11 (1993), pp. 1510–1512. doi: 10.1063/1.110758.

  • [247] E. Cartier, D. A. Buchanan, and G. J. Dunn. “Atomic Hydrogen-Induced Interface Degradation of Reoxidized-Nitrided Silicon Dioxide on Silicon”. In: Applied Physics Letters 64.7 (1994), pp. 901–903. doi: 10.1063/1.110990.

  • [248] G. Pobegen, S. Tyaginov, M. Nelhiebel, and T. Grasser. “Observation of Normally Distributed Energies for Interface Trap Recovery After Hot-Carrier Degradation”. In: IEEE Electron Device Letters 34.8 (Aug. 2013), pp. 939–941. doi: 10.1109/LED.2013.2262521.

  • [249] M. Vandemaele, K. Chuang, E. Bury, S. Tyaginov, G. Groeseneken, and B. Kaczer. “The Influence of Gate Bias on the Anneal of Hot-Carrier Degradation”. In: 2020 IEEE International Reliability Physics Symposium (IRPS). 2020, pp. 1–7. doi: 10.1109/IRPS45951.2020.9128218.

  • [250] L.-A. Ragnarsson and P. Lundgren. “Electrical Characterization of Pb Centers in (100)Si–SiO2 Structures: The Influence of Surface Potential on Passivation During Post Metallization Anneal”. In: Journal of Applied Physics 88.2 (2000), pp. 938–942. doi: 10.1063/1.373759.

  • [251] S. T. Pantelides, S. Wang, A. Franceschetti, R. Buczko, M. Di Ventra, S. N. Rashkeev, L. Tsetseris, M. Evans, I. Batyrev, L. C. Feldman, S. Dhar, K. McDonald, R. A. Weller, R. Schrimpf, D. Fleetwood, X. Zhou, J. R. Williams, C. C. Tin, G. Chung, T. Isaacs-Smith, S. Wang, S. Pennycook, G. Duscher, K. Van Benthem, and L. Porter. “Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs - Challenges and Advances”. In: Silicon Carbide and Related Materials 2005. Vol. 527. Materials Science Forum. Trans Tech Publications Ltd, Oct. 2006, pp. 935–948. doi: 10.4028/www.scientific.net/MSF.527-529.935.

  • [252] “Hydrogen in MOSFETs - A Primary Agent of Reliability Issues”. In: Microelectronics Reliability 47.6 (June 2007), pp. 903–911. doi: 10.1016/j.microrel.2006.10.011.

  • [253] L. Tsetseris and S. T. Pantelides. “Migration, Incorporation, and Passivation Reactions of Molecular Hydrogen at the Si(100)/SiO2 Interface”. In: Phys. Rev. B 70 (24 Dec. 2004), p. 245320. doi: 10.1103/PhysRevB.70.245320.

  • [254] L. Tsetseris and S. T. Pantelides. “Hydrogenation/Deuteration of the Si-SiO2 Interface: Atomic-Scale Mechanisms and Limitations”. In: Applied Physics Letters 86.11 (2005), pp. 1–3. doi: 10.1063/1.1883710.

  • [255] L. Tsetseris and S. T. Pantelides. “Reactions of Excess Hydrogen at a Si(111) Surface with H Termination: First-Principles Calculations”. In: Physical Review B - Condensed Matter and Materials Physics 74.11 (2006), pp. 1–4. doi: 10.1103/PhysRevB.74.113301.

  • [256] L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides. “Hydrogen-Related Instabilities in MOS Devices Under Bias Temperature Stress”. In: IEEE Transactions on Device and Materials Reliability 7.4 (Dec. 2007), pp. 502–508. doi: 10.1109/TDMR.2007.910438.

  • [257] A. Van Wieringen and N. Warmoltz. “On the Permeation of Hydrogen and Helium in Single Crystal Silicon and Germanium at Elevated Temperatures”. In: Physica 22.6-12 (Jan. 1956), pp. 849–865. doi: 10.1016/S0031-8914(56)90039-8.

  • [258] C. G. Van de Walle. “Universal Alignment of Hydrogen Levels in Semiconductors and Insulators”. In: Physica B: Condensed Matter 376-377.1 (Apr. 2006), pp. 1–6. doi: 10.1016/j.physb.2005.12.004.

  • [259] C. Herring, N. M. Johnson, and C. G. Van de Walle. “Energy Levels of Isolated Interstitial Hydrogen in Silicon”. In: Phys. Rev. B 64 (12 Sept. 2001), p. 125209. doi: 10.1103/PhysRevB.64.125209.

  • [260] M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni. “H2 Cracking at SiO2 Defect Centers”. In: The Journal of Physical Chemistry A 104.20 (2000), pp. 4674–4684. doi: 10.1021/jp993214f.

  • [261] A. Yokozawa and Y. Miyamoto. “First-Principles Calculations for Charged States of Hydrogen Atoms in SiO2 ”. In: Phys. Rev. B 55 (20 May 1997), pp. 13783–13788. doi: 10.1103/PhysRevB.55.13783.

  • [262] J. Godet, F. Giustino, and A. Pasquarello. “Proton-Induced Fixed Positive Charge at the Si(100)-SiO2 Interface”. In: Phys. Rev. Lett. 99 (12 Sept. 2007), p. 126102. doi: 10.1103/PhysRevLett.99.126102.

  • [263] J. Godet and A. Pasquarello. “Proton Diffusion Mechanism in Amorphous SiO2 ”. In: Phys. Rev. Lett. 97 (15 Oct. 2006), p. 155901. doi: 10.1103/PhysRevLett.97.155901.

  • [264] S. A. Sheikholeslam, H. Manzano, C. Grecu, and A. Ivanov. “Reduced Hydrogen Diffusion in Strained Amorphous SiO2 : Understanding Ageing in MOSFET Devices”. In: J. Mater. Chem. C 4 (34 2016), pp. 8104–8110. doi: 10.1039/C6TC02647H.

  • [265] Q. Zhang, S. Tang, and R. M. Wallace. “Proton Trapping and Diffusion in SiO2 Thin Films: a First-Principles Study”. In: Applied Surface Science 172.1 (2001), pp. 41–46. doi: 10.1016/S0169-4332(00)00839-4.

  • [266] T. E. Tsai, D. L. Griscom, and E. J. Friebele. “Medium-Range Structural Order and Fractal Annealing Kinetics of Radiolytic Atomic Hydrogen in High-Purity Silica”. In: Phys. Rev. B 40 (9 Sept. 1989), pp. 6374–6380. doi: 10.1103/PhysRevB.40.6374.

  • [267] I. A. Shkrob and A. D. Trifunac. “Time-Resolved EPR of Spin-Polarized Mobile H Atoms in Amorphous Silica: The Involvement of Small Polarons”. In: Phys. Rev. B 54 (21 Dec. 1996), pp. 15073–15078. doi: 10.1103/PhysRevB.54.15073.

  • [268] K. Blum. Density Matrix Theory and Applications. Ed. by K. Blum. Springer Verlag, 2012. doi: 10.1007/978-3-642-20561-3.

  • [269] G. Lindblad. “On the Generators of Quantum Dynamical Semigroups”. In: Communications in Mathematical Physics 48 (June 1976), pp. 119–130. doi: 10.1007/BF01608499.

  • [270] I. Andrianov and P. Saalfrank. “Free Vibrational Relaxation of H Adsorbed on a Si(100) Surface Investigated with the Multi-Configurational Time-Dependent Hartree Method”. In: Chemical Physics Letters 433.1-3 (2006), pp. 91–96. doi: 10.1016/j.cplett.2006.11.067.

  • [271] I. Andrianov and P. Saalfrank. “Theoretical Study of Vibration-Phonon Coupling of H Adsorbed on a Si(100) Surface.” In: The Journal of chemical physics 124.3 (2006), p. 34710. doi: 10.1063/1.2161191.

  • [272] F. Bouakline, F. Lüder, R. Martinazzo, and P. Saalfrank. “Reduced and Exact Quantum Dynamics of the Vibrational Relaxation of a Molecular System Interacting with a Finite-Dimensional Bath”. In: Journal of Physical Chemistry A 116 (2012), pp. 11118–11127. doi: 10.1021/jp304466u.

  • [273] F. Bouakline, U. Lorenz, G. Melani, G. K. Paramonov, and P. Saalfrank. “Isotopic Effects in Vibrational Relaxation Dynamics of H on a Si(100) Surface”. In: The Journal of Chemical Physics 147.14 (2017), p. 144703. doi: 10.1063/1.4994635.

  • [274] U. Lorenz and P. Saalfrank. “A Novel System-Bath Hamiltonian for Vibration-Phonon Coupling: Formulation, and Application to the Relaxation of Si-H and Si-D Bending Modes of H/D:Si(100)-(2×1)”. In: Chemical Physics 482 (2017), pp. 69–80. doi: 10.1016/j.chemphys.2016.06.004.

  • [275] I. Andrianov and P. Saalfrank. “Vibrational Relaxation rates for H on a Si (10 ):(2×1) Surface : A Two-Dimensional Model”. In: Chem. Phys. Lett. 350.12 (2001), pp. 191–197. doi: 10.1016/S0009-2614(01)01304-5.

  • [276] K. Zenichowski, T. Klamroth, and P. Saalfrank. “Open-System Density Matrix Description of an STM-Driven Atomic Switch: H on Si(100)”. In: Applied Physics A 93.2 (Nov. 2008), pp. 319–333. doi: 10.1007/s00339-008-4833-3.

  • [277] B. Persson and J. Demuth. “Inelastic Electron Tunnelling from a Metal Tip”. In: Solid State Communications 57.9 (1986), pp. 769–772. doi: 10.1016/0038-1098(86)90856-2.

  • [278] R. E. Walkup, D. M. Newns, and P. Avouris. “Role of Multiple Enelastic Transitions in Atom Transfer with the Scanning Tunneling Microscope”. In: Phys. Rev. B 48 (3 July 1993), pp. 1858–1861. doi: 10.1103/PhysRevB.48.1858.

  • [279] R. Walkup, D. Newns, and P. Avouris. “Vibrational Heating and Atom Transfer with the STM”. In: Journal of Electron Spectroscopy and Related Phenomena 64 (1993), pp. 523–532. doi: 10.1016/0368-2048(93)80118-6.

  • [280] S. Gao, M. Persson, and B. I. Lundqvist. “Theory of Atom Transfer with a Scanning Tunneling Microscope”. In: Phys. Rev. B 55 (7 Feb. 1997), pp. 4825–4836. doi: 10.1103/PhysRevB.55.4825.

  • [281] G. P. Salam, M. Persson, and R. E. Palmer. “Possibility of Coherent Multiple Excitation in Atom Transfer with a Scanning Tunneling Microscope”. In: Physical Review B 49.15 (1994), pp. 10655–10662. doi: 10.1103/PhysRevB.49.10655.

  • [282] J. W. Gadzuk. “Inelastic Resonance Scattering, Tunneling, and Desorption”. In: Physical Review B 44.24 (1991), pp. 13466–13477. doi: 10.1103/PhysRevB.44.13466.

  • [283] J. W. Gadzuk. “Resonance-Assisted, Hot-Electron-Induced Desorption”. In: Surface Science 342.1-3 (1995), pp. 345–358. doi: 10.1016/0039-6028(95)00607-9.

  • [284] B. Persson and H. Ueba. “Theory of Inelastic Tunneling Induced Motion of Adsorbates on Metal Surfaces”. In: Surface Science 502 (2002), pp. 18–25. issn: 0039-6028. doi: 10.1016/S0039-6028(01)01893-3.

  • [285] S. Gao. “Quantum Kinetic Theory of Vibrational Heating and Bond Breaking by Hot Electrons”. In: Physical Review B 55.3 (1997), pp. 1876–1886. doi: 10.1103/PhysRevB.55.1876.

  • [286] J. E. Shelby. “Molecular Diffusion and Solubility of Hydrogen Isotopes in Vitreous Silica”. In: Journal of Applied Physics 48.8 (1977), pp. 3387–3394. doi: 10.1063/1.324180.

  • [287] M. C. Wang, Z. Y. Hsieh, C. S. Liao, C. H. Tu, S. Y. Chen, and H. S. Huang. “Effective Edge Width for 65 nm pMOSFETs and Their Variations Under CHC Stress”. In: IEEE Electron Device Letters 32.5 (May 2011), pp. 584–586. doi: 10.1109/LED.2011.2109696.

  • [288] I. Polishchuk, Y.-C. Yeo, Q. Lu, T.-J. King, and C. Hu. “Hot-Carrier Reliability Comparison for pMOSFETs with Ultrathin Silicon-Nitride and Silicon-Oxide Gate Dielectrics”. In: IEEE Transactions on Device and Materials Reliability 1.3 (Sept. 2001), pp. 158–162. issn: 1530-4388. doi: 10.1109/7298.974831.

  • [289] C. Jungemann and B. Meinerzhagen. Hierarchical Device Simulation. Ed. by S. Selberherr. Springer, Wien, 2003. doi: 10.1007/978-3-7091-6086-2.

  • [290] F. Hsu and K. Chiu. “Temperature Dependence of Hot-Electron-Induced Degradation in MOSFETs”. In: IEEE Electron Device Letters 5.5 (1984), pp. 148–150. doi: 10.1109/EDL.1984.25865.

  • [291] M. Song, K. P. MacWilliams, and J. C. S. Woo. “Comparison of NMOS and PMOS Hot Carrier Effects from 300 to 77 K”. In: IEEE Transactions on Electron Devices 44.2 (1997), pp. 268–276. doi: 10.1109/16.557714.

  • [292] Z. Song, Z. Chen, A. Z. Yong, Y. Song, J. Wu, and K. Chien. “The Failure Mechanism Worst Stress Condition for Hot Carrier Injection of NMOS”. In: ECS Transactions 52.1 (Mar. 2013), pp. 947–952. doi: 10.1149/05201.0947ecst.

  • [293] E. Amat, T. Kauerauf, R. Degraeve, R. Rodríguez, M. Nafría, X. Aymerich, and G. Groeseneken. “Channel Hot-Carrier Degradation in pMOS and nMOS Short Channel Transistors with high-κ Dielectric Stack”. In: Microelectronic Engineering 87.1 (2010), pp. 47–50. issn: 0167-9317. doi: 10.1016/j.mee.2009.05.013.

  • [294] K. T. Lee, C. Y. Kang, O. S. Yoo, R. Choi, B. H. Lee, J. C. Lee, H. Lee, and Y. Jeong. “PBTI-Associated High-Temperature Hot Carrier Degradation of nMOSFETs With Metal-Gate/High-κ Dielectrics”. In: IEEE Electron Device Letters 29.4 (2008), pp. 389–391. doi: 10.1109/LED.2008.918257.

  • [295] X. Ju and D. S. Ang. “Response of Switching Hole Traps in the Small–Area pMOSFET Under Channel Hot-Hole Effect”. In: 2019 IEEE International Reliability Physics Symposium (IRPS). Mar. 2019, pp. 1–4. doi: 10.1109/IRPS.2019.8720476.

  • [296] X. Ju and D. S. Ang. “Alteration of Gate-Oxide Trap Capture/Emission Time Constants by Channel Hot-Carrier Effect in the Metal-Oxide-Semiconductor Field-Effect Transistor”. In: IEEE Access 8 (2020), pp. 14048–14053. doi: 10.1109/ACCESS.2020.2966577.

  • [297] D. Jabs, K. H. Bach, and C. Jungemann. “Avalanche Breakdown Evolution Under Hot-Carrier Stress: A New Microscopic Simulation Approach Applied to a Vertical Power MOSFET”. In: Journal of Computational Electronics 17.3 (Sept. 2018), pp. 1249–1256. doi: 10.1007/s10825-018-1196-7.

  • [298] S.-M. Hong, C. Jungemann, and M. Bollhofer. “A Deterministic Boltzmann Equation Solver for Two-Dimensional Semiconductor Devices”. In: 2008 International Conference on Simulation of Semiconductor Processes and Devices. Sept. 2008, pp. 293–296. doi: 10.1109/SISPAD.2008.4648295.

  • [299] S.-M. Hong and C. Jungemann. “A Fully Coupled Scheme for a Boltzmann-Poisson Equation Solver Based on a Spherical Harmonics Expansion”. In: Journal of Computational Electronics 8.3 (Oct. 2009), p. 225. doi: 10.1007/s10825-009-0294-y.

  • [300] G. A. Rott, K. Rott, H. Reisinger, W. Gustin, and T. Grasser. “Mixture of Negative Bias Temperature Instability and Hot–Carrier Driven Threshold Voltage Degradation of 130 nm Technology p-Channel Transistors”. In: Microelectronics Reliability 54.9-10 (2014), pp. 2310–2314. doi: 10.1016/j.microrel.2014.07.040.

  • [301] C. Schlünder, R. Brederlow, B. Ankele, W. Gustin, K. Goser, and R. Thewes. “Effects of Inhomogeneous Negative Bias Temperature Stress on p-Channel MOSFETs of Aanalog and RF Circuits”. In: Microelectronics Reliability 45.1 (2005), pp. 39–46. issn: 0026-2714. doi: 10.1016/j.microrel.2004.03.017.

  • [302] P. Chaparala and D. Brisbin. “Impact of NBTI and HCI on pMOSFET Threshold Voltage Drift”. In: Microelectronics Reliability 45.1 (2005), pp. 13–18. doi: 10.1016/j.microrel.2004.03.016.

  • [303] X. Federspiel, M. Rafik, D. Angot, F. Cacho, and D. Roy. “Interaction between BTI and HCI Degradation in High-κ Devices”. In: 2013 IEEE International Reliability Physics Symposium (IRPS). Apr. 2013, XT.9.1–XT.9.4. doi: 10.1109/IRPS.2013.6532124.

  • [304] B. S. Doyle, B. J. Fishbein, and K. R. Mistry. “NBTI-enhanced Hot Carrier Damage in p-Channel MOSFETs”. In: International Electron Devices Meeting 1991 [Technical Digest]. Dec. 1991, 529–532A. doi: 10.1109/IEDM.1991.235340.

  • [305] H. Aono, E. Murakami, K. Okuyama, K. Makabe, K. Kuroda, K. Watanabe, H. Ozaki, K. Yanagisawa, K. Kubota, and Y. Ohji. “NBT-induced Hot Carrier (HC) Effect: Positive Feedback Mechanism in p-MOSFET’s Degradation”. In: 2002 IEEE International Reliability Physics Symposium (IRPS). Apr. 2002, pp. 79–85. doi: 10.1109/RELPHY.2002.996613.

  • [306] G. La Rosa, F. Guarin, S. Rauch, A. Acovic, J. Lukaitis, and E. Crabbe. “NBTI-Channel Hot Carrier Effects in pMOSFETs in Advanced CMOS Technologies”. In: 1997 IEEE International Reliability Physics Symposium Proceedings. 35th Annual. Apr. 1997, pp. 282–286. doi: 10.1109/RELPHY.1997.584274.

  • [307] Yandong He and Ganggang Zhang. “Experimental Insights on the Degradation and Recovery of pMOSFET under Non–Uniform NBTI Stresses”. In: 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). July 2011, pp. 1–6. doi: 10.1109/IPFA.2011.5992767.

  • [308] A. Chasin, E. Bury, B. Kaczer, J. Franco, P. Roussel, R. Ritzenthaler, H. Mertens, N. Horiguchi, D. Linten, and A. Mocuta. “Complete Degradation Mapping of Stacked Gate-All-Around Si Nanowire Transistors considering both Intrinsic and Extrinsic Effects”. In: 2017 IEEE International Electron Devices Meeting (IEDM). Dec. 2017, pp. 7.1.1–7.1.4. doi: 10.1109/IEDM.2017.8268343.

  • [309] M. Duan, J. F. Zhang, J. C. Zhang, W. Zhang, Z. Ji, B. Benbakhti, X. F. Zheng, Y. Hao, D. Vigar, F. Adamu-Lema, V. Chandra, R. Aitken, B. Kaczer, G. Groeseneken, and A. Asenov. “Interaction between Hot Carrier Aging and PBTI Degradation in nMOSFETs: Characterization, Modelling and Lifetime Prediction”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). Apr. 2017, XT-5.1-XT–5.7. doi: 10.1109/IRPS.2017.7936419.

  • [310] E. Bury, A. Chasin, M. Vandemaele, S. Van Beek, J. Franco, B. Kaczer, and D. Linten. “Array-Based Statistical Characterization of CMOS Degradation Modes and Modeling of the Time-Dependent Variability Induced by Different Stress Patterns in the {VG ,VD } Bias Space”. In: 2019 IEEE International Reliability Physics Symposium (IRPS). Mar. 2019, pp. 1–6. doi: 10.1109/IRPS.2019.8720592.

  • [311] M. Vandemaele, B. Kaczer, Z. Stanojevic, S. E. Tyaginov, A. Makarov, A. Chasin, H. Mertens, D. Linten, and G. Groeseneken. “Distribution Function Based Simulations of Hot-Carrier Degradation in Nanowire FETs”. In: Proceedings of the IEEE International Integrated Reliability Workshop (IIRW). 2018. isbn: 978-1-5386-6039-3. doi: 10.1109/IIRW.2018.8727081.

  • [312] B. Kaczer, T. Grasser, P. J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing-New Evaluation and Insights”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2008, pp. 20–27. doi: 10.1109/RELPHY.2008.4558858.

  • [313] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien - New York, 1984. doi: 10.1007/978-3-7091-8752-4.

  • [314] F. Hoehne, J. Lu, A. R. Stegner, M. Stutzmann, M. S. Brandt, M. Rohrmüller, W. G. Schmidt, and U. Gerstmann. “Electrically Detected Electron-Spin-Echo Envelope Modulation: A Highly Sensitive Technique for Resolving Complex Interface Structures”. In: Phys. Rev. Lett. 106 (19 May 2011), p. 196101. doi: 10.1103/PhysRevLett.106.196101.

  • [315] J. Cottom, G. Gruber, G. Pobegen, T. Aichinger, and A. L. Shluger. “Recombination Defects at the 4H-SiC/SiO2 Interface Investigated with Electrically Detected Magnetic Resonance and Ab Initio Calculations”. In: Journal of Applied Physics 124.4 (2018), p. 045302. doi: 10.1063/1.5024608.

  • [316] T. Olsen, J. Gavnholt, and J. Schiøtz. “Hot-Electron-Mediated Desorption Rates Calculated from Excited-State Potential Energy Surfaces”. In: Phys. Rev. B 79 (3 Jan. 2009), p. 035403. doi: 10.1103/PhysRevB.79.035403.

  • [317] J. Gavnholt, A. Rubio, T. Olsen, K. S. Thygesen, and J. Schiøtz. “Hot-Electron-Assisted Femtochemistry at Surfaces: A Time-Dependent Density Functional Theory Approach”. In: Phys. Rev. B 79 (19 May 2009), p. 195405. doi: 10.1103/PhysRevB.79.195405.

  • [318] T. Kreibich and E. K. U. Gross. “Multicomponent Density-Functional Theory for Electrons and Nuclei”. In: Phys. Rev. Lett. 86 (14 Apr. 2001), pp. 2984–2987. doi: 10.1103/PhysRevLett.86.2984.

  • [319] Q. Wu and T. Van Voorhis. “Direct Pptimization Method to Study Constrained Systems within Density-Functional Theory”. In: Phys. Rev. A 72 (2 Aug. 2005), p. 024502. doi: 10.1103/PhysRevA.72.024502.

  • [320] J. Gavnholt, T. Olsen, M. Engelund, and J. Schiøtz. “∆ Self-Consistent Field Method to Obtain Potential Energy Surfaces of Excited Molecules on Surfaces”. In: Phys. Rev. B 78 (7 Aug. 2008), p. 075441. doi: 10.1103/PhysRevB.78.075441.

  • [321] T. Baruah, M. Olguin, and R. R. Zope. “Charge Transfer Excited State Energies by Perturbative Delta Self Consistent Field Method”. In: The Journal of Chemical Physics 137.8 (2012), p. 084316. doi: 10.1063/1.4739269.

  • [322] A. Hellman, B. Razaznejad, and B. I. Lundqvist. “Potential-Energy Surfaces for Excited States in Extended Systems”. In: The Journal of Chemical Physics 120.10 (2004), pp. 4593–4602. doi: 10.1063/1.1645787.

  • [323] M. Houssa, G. Pourtois, V. V. Afanas’ev, and A. Stesmans. “First-Principles Study of Ge Dangling Bonds in GeO2 and Correlation with Electron Spin Resonance at Ge/GeO2 Interfaces”. In: Applied Physics Letters 99.21 (2011), p. 212103. doi: 10.1063/1.3662860.

  • [324] L. Tsetseris and S. T. Pantelides. “Morphology and Defect Properties of the Ge-GeO2 Interface”. In: Applied Physics Letters 95.26 (2009), p. 262107. doi: 10.1063/1.3280385.

  • [325] P. Broqvist, J. F. Binder, and A. Pasquarello. “First Principles Study of Electronic and Structural Properties of the Ge/GeO2 Interface”. In: Physica B: Condensed Matter 407.15 (2012), pp. 2926–2931. doi: 10.1016/j.physb.2011.08.037.

  • [326] T. Grasser, M. Waltl, W. Goes, Y. Wimmer, A. .-M. El-Sayed, A. L. Shluger, and B. Kaczer. “On the Volatility of Oxide Defects: Activation, Deactivation, and Transformation”. In: 2015 IEEE International Reliability Physics Symposium. Apr. 2015, 5A.3.1–5A.3.8. doi: 10.1109/IRPS.2015.7112739.

  • [327] “Silicon (Si) High-Frequency Dielectric Constant”. In: Group IV Elements, IV-IV and III-V Compounds. Part a - Lattice Properties. Ed. by O. Madelung, U. Rössler, and M. Schulz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–7. doi: 10.1007/10551045_218.

  • [328] J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamashita. “Temperature Dependence of Refractive Index of SiO2 Glass”. In: Journal of Non-Crystalline Solids 135.1 (1991), pp. 86–89. doi: 10.1016/0022-3093(91)90447-E.

  • [329] W. A. Pliskin and R. P. Esch. “Refractive Index of SiO2 Films Grown on Silicon”. In: Journal of Applied Physics 36.6 (1965), pp. 2011–2013. doi: 10.1063/1.1714393.

  • [330] Y. Park, K.-j. Kong, H. Chang, and M. Shin. “First-Principles Studies of the Electronic and Dielectric Properties of Si/SiO2 /HfO2 Interfaces”. In: Japanese Journal of Applied Physics 52.4R (Apr. 2013), p. 041803. doi: 10.7567/JJAP.52.041803.

  • [331] N. Shi and R. Ramprasad. “Atomic-Scale Dielectric Permittivity Profiles in Slabs and Multilayers”. In: Physical Review B 74.4 (July 2006), p. 045318. doi: 10.1103/PhysRevB.74.045318.

  • [332] S. Wakui, J. Nakamura, and A. Natori. “Atomic Scale Dielectric Constant Near the SiO2 /Si(001) Interface”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26.4 (2008), p. 1579. doi: 10.1116/1.2937734.

  • [333] F. Giustino and A. Pasquarello. “Theory of Atomic-Scale Dielectric Permittivity at Insulator Interfaces”. In: Phys. Rev. B 71 (14 Apr. 2005), p. 144104. doi: 10.1103/PhysRevB.71.144104.