\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\def \LWRbooktabscmidruleparen (#1)#2{}\)
\(\newcommand {\LWRbooktabscmidrulenoparen }[1]{}\)
\(\newcommand {\cmidrule }[1][]{\ifnextchar (\LWRbooktabscmidruleparen \LWRbooktabscmidrulenoparen }\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\def \LWRpagenote {1}\)
\(\newcommand {\pagenote }[2][\LWRpagenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\Vg }{V_\mathrm {G}}\)
\(\newcommand {\Vd }{V_\mathrm {D}}\)
\(\newcommand {\Vdd }{V_\mathrm {DD}}\)
\(\newcommand {\interface }{Si/SiO$_2$}\)
\(\newcommand {\sio }{SiO$_2$}\)
\(\newcommand {\VgVd }{\{$V_\mathrm {G},V_\mathrm {D}$\}}\)
\(\newcommand {\taue }{$\tau _\mathrm {e}$}\)
\(\newcommand {\tauc }{$\tau _\mathrm {c}$}\)
\(\newcommand {\eox }{$F_\mathrm {ox}$}\)
\(\newcommand {\idx }{_{i,j}}\)
\(\newcommand {\idxrm }{_\mathrm {i,j}}\)
\(\newcommand {\kb }{k_\mathrm {B}}\)
\(\newcommand {\nmpeq }{NMP$_\mathrm {eq.}$}\)
\(\newcommand {\nmpeqext }{NMP$_\mathrm {eq.+II}$}\)
\(\newcommand {\nmpneq }{NMP$_\mathrm {neq.}$}\)
\(\newcommand {\units }[2]{$\SI {#1}{#2}$}\)
\(\newcommand {\fptOne }{$\tau _\mathrm {e,FPT}^{1^\prime ,1}$}\)
\(\newcommand {\fptTwo }{$\tau _\mathrm {e,FPT}^{2^\prime ,1}$}\)
\(\newcommand {\ts }{$t_\mathrm {s}$}\)
\(\newcommand {\dvth }{\Delta V_\mathrm {th}}\)
\(\newcommand {\Pb }{$P_\mathrm {b}$}\)
\(\newcommand {\Pbzero }{$P_\mathrm {b0}$}\)
\(\newcommand {\Pbone }{$P_\mathrm {b1}$}\)
\(\newcommand {\Nit }{$N_\mathrm {it}(x)$}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\LWRsiunitxEND }{}\)
\(\def \LWRsiunitxang #1;#2;#3;#4\LWRsiunitxEND {\ifblank {#1}{}{\num {#1}\degree }\ifblank {#2}{}{\num {#2}^{\unicode {x2032}}}\ifblank {#3}{}{\num {#3}^{\unicode {x2033}}}}\)
\(\newcommand {\ang }[2][]{\LWRsiunitxang #2;;;\LWRsiunitxEND }\)
\(\newcommand {\LWRsiunitxnumscientific }[2]{\ifblank {#1}{}{\ifstrequal {#1}{-}{-}{\LWRsiunitxprintdecimal {#1}\times }}10^{\LWRsiunitxprintdecimal {#2}} }\)
\(\def \LWRsiunitxnumplus #1+#2+#3\LWRsiunitxEND {\ifblank {#2} {\LWRsiunitxprintdecimal {#1}}{\ifblank {#1}{\LWRsiunitxprintdecimal {#2}}{\LWRsiunitxprintdecimal {#1}\unicode
{x02B}\LWRsiunitxprintdecimal {#2}}}}\)
\(\def \LWRsiunitxnumminus #1-#2-#3\LWRsiunitxEND {\ifblank {#2} {\LWRsiunitxnumplus #1+++\LWRsiunitxEND }{\LWRsiunitxprintdecimal {#1}\unicode {x02212}\LWRsiunitxprintdecimal {#2}}}\)
\(\def \LWRsiunitxnumpm #1+-#2+-#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumminus #1---\LWRsiunitxEND }{\LWRsiunitxprintdecimal {#1}\unicode {x0B1}\LWRsiunitxprintdecimal {#2}}}\)
\(\def \LWRsiunitxnumx #1x#2x#3x#4\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumpm #1+-+-\LWRsiunitxEND }{\ifblank {#3}{\LWRsiunitxprintdecimal {#1}\times \LWRsiunitxprintdecimal
{#2}}{\LWRsiunitxprintdecimal {#1}\times \LWRsiunitxprintdecimal {#2}\times \LWRsiunitxprintdecimal {#3}}}}\)
\(\def \LWRsiunitxnumD #1D#2D#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumx #1xxxxx\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\)
\(\def \LWRsiunitxnumd #1d#2d#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumD #1DDD\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\)
\(\def \LWRsiunitxnumE #1E#2E#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumd #1ddd\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\)
\(\def \LWRsiunitxnume #1e#2e#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumE #1EEE\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\)
\(\def \LWRsiunitxnumcomma #1,#2,#3\LWRsiunitxEND {\ifblank {#2} {\LWRsiunitxnume #1eee\LWRsiunitxEND } {\LWRsiunitxnume #1.#2eee\LWRsiunitxEND } }\)
\(\newcommand {\num }[2][]{\LWRsiunitxnumcomma #2,,,\LWRsiunitxEND }\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\def \LWRsiunitxSIopt #1[#2]#3{{#2}\num {#1}{#3}}\)
\(\newcommand {\LWRsiunitxSI }[2]{\num {#1}\,{#2}}\)
\(\newcommand {\SI }[2][]{\ifnextchar [{\LWRsiunitxSIopt {#2}}{\LWRsiunitxSI {#2}}}\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\num {#2}\,\unicode {x2013}\,\num {#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\num {#2}\,#4\,\unicode {x2013}\,\num {#3}\,#4}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\pm }{\pico \metre }\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {physics}\)
\(\newcommand {\LWRsfrac }[2][/]{{}^\LWRsfracnumerator \!#1{}_{#2}}\)
\(\newcommand {\sfrac }[2][]{\def \LWRsfracnumerator {#2}\LWRsfrac }\)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\def \LWRsiunitxprintdecimalsub #1,#2,#3\LWRsiunitxEND {\mathrm {#1}\ifblank {#2}{}{.\mathrm {#2}}}\)
\(\newcommand {\LWRsiunitxprintdecimal }[1]{\LWRsiunitxprintdecimalsub #1,,,\LWRsiunitxEND }\)
-
[MJJ1] Y. Illarionov, T. Knobloch, M. Jech, M. Lanza, D. Akinwande, M. I. Vexler, T. Müller, M. Lemme, G. Fiori, F. Schwierz, and T. Grasser. “Insulators
for 2D Nanoelectronics: The Gap to Bridge”. In: Nature Communications 11 (2020), p. 3385. doi: 10.1038/s41467-020-16640-8.
-
[MJJ2] M. Jech, G. Rott, H. Reisinger, S. Tyaginov, G. Rzepa, A. Grill, D. Jabs, C. Jungemann, M. Waltl, and T. Grasser. “Mixed Hot-Carrier/Bias Temperature Instability
Degradation Regimes in Full VG , VD Bias Space: Implications and Peculiarities”. In: IEEE Transactions on Electron Devices 67.8 (2020), pp. 3315–3322. doi: 10.1109/TED.2020.3000749.
-
[MJJ3] M. Jech, A.-M. El-Sayed, S. Tyaginov, A. L. Shluger, and T. Grasser. “Ab Initio Treatment of Silicon-Hydrogen Bond Rupture at Si/SiO2 Interfaces”. In: Phys. Rev.
B 100 (19 2019), p. 195302. doi: 10.1103/PhysRevB.100.195302.
-
[MJJ4] M. Jech, B. Ullmann, G. Rzepa, S. E. Tyaginov, A. Grill, M. Waltl, D. Jabs, C. Jungemann, and T. Grasser. “Impact of Mixed Negative Bias Temperature Instability and
Hot Carrier Stress on MOSFET Characteristics-Part II: Theory”. In: IEEE Transactions on Electron Devices 66.1 (2019), pp. 241–248. doi: 10.1109/TED.2018.2873421.
-
[MJJ5] A. Makarov, B. Kaczer, A. Chasin, M. Vandemaele, E. Bury, M. Jech, A. Grill, G. Hellings, A.-M. El-Sayed, T. Grasser, D. Linten, and S. E. Tyaginov. “Bi-Modal
Variability of nFinFET Characteristics During Hot-Carrier Stress: A Modeling Approach”. In: IEEE Electron Device Letters 40.10 (2019), pp. 1579–1582. doi: 10.1109/LED.2019.2933729.
-
[MJJ6] B. Ullmann, M. Jech, K. Puschkarsky, G. A. Rott, M. Waltl, Y. Illarionov, H. Reisinger, and T. Grasser. “Impact of Mixed Negative Bias Temperature Instability and Hot
Carrier Stress on MOSFET Characteristics-Part I: Experimental”. In: IEEE Transactions on Electron Devices 66.1 (2019), pp. 232–240. doi: 10.1109/TED.2018.2873419.
-
[MJJ7] W. Gös, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. L. Shluger, and T. Grasser. “Identification of Oxide Defects in Semiconductor Devices: A Systematic
Approach Linking DFT to Rate Equations and Experimental Evidence”. In: Microelectronics Reliability 87 (2018), pp. 286–320. doi: 10.1016/j.microrel.2017.12.021.
-
[MJJ8] G. Rzepa, J. Franco, B. J. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P. J. Roussel, D. Linten, B. Kaczer, and T. Grasser.
“Comphy – A Compact-Physics Framework for Unified Modeling of BTI”. In: Microelectronics Reliability 85.1 (2018), pp. 49–65. doi: 10.1016/j.microrel.2018.04.002.
-
[MJJ9] B. Kaczer, J. Franco, S. E. Tyaginov, M. Jech, G. Rzepa, T. Grasser, B. J. O’Sullivan, R. Ritzenhaler, T. Schram, A. Spessot, D. Linten, and N. Horiguchi. “Mapping of
CMOS FET Degradation in Bias Space–Application to Dram Peripheral Devices”. In: Journal of Vacuum Science & Technology B 35.1 (2017), 01A109-1–01A109-6. doi: 10.1116/1.4972872.
-
[MJJ10] M. Jech, P. Sharma, S. E. Tyaginov, F. Rudolf, and T. Grasser. “On the Limits of Applicability of Drift-Diffusion Based Hot Carrier Degradation Modeling”. In:
Japanese Journal of Applied Physics 55.4S (2016), pp. 1–6. doi: 10.7567/JJAP.55.04ED14.
-
[MJJ11] P. Sharma, S. E. Tyaginov, M. Jech, Y. Wimmer, F. Rudolf, H. Enichlmair, J. Park, H. Ceric, and T. Grasser. “The Role of Cold Carriers and the Multiple-Carrier
Process of Si-H Bond Dissociation for Hot-Carrier Degradation in n- and p-channel LDMOS Devices”. In: Solid-State Electronics 115.Part B (2016), pp. 185–191. doi: 10.1016/j.sse.2015.08.014.
-
[MJJ12] S. Tyaginov, M. Jech, J. Franco, P. Sharma, B. Kaczer, and T. Grasser. “Understanding and Modeling the Temperature Behavior of Hot-Carrier Degradation in SiON
nMOSFETs”. In: IEEE Electron Device Letters 37.1 (2016), pp. 84–87. doi: 10.1109/LED.2015.2503920.
-
[MJC1] J. Franco, J.-F. de Marneffe, A. Vandooren, Y. Kimura, L. Nyns, Z. Wu, A.-M. El-Sayed, M. Jech, D. Waldhoer, D. Claes, H. Arimura, L.-A. Ragnarsson, V. Afanas’ev,
A. Stesmans, N. Horiguchi, D. Linten, T. Grasser, and B. Kaczer. “Atomic Hydrogen Exposureto Enable High–Quality Low–Temperature SiO2 with Excellent pMOS NBTI Reliability Compatible with 3D Sequential Tier Stacking”.
In: 2020 IEEE International Electron Devices Meeting (IEDM). Dec. 2020, accepted.
-
[MJC2] D. Milardovich, M. Jech, D. Waldhör, M. Waltl, and T. Grasser. “Machine Learning Prediction of Formation Energies in a-SiO2 ”. In: Proceedings of
the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2020, pp. 339–342.
-
[MJC3] B. Ruch, M. Jech, G. Pobegen, and T. Grasser. “Applicability of Shockley–Read–Hall Theory for Interface States”. In: 2020 IEEE International Electron Devices Meeting
(IEDM). Dec. 2020, accepted.
-
[MJC4] S. Tyaginov, A. Grill, M. Vandemaele, T. Grasser, G. Hellings, A. Makarov, M. Jech, D. Linten, and B. Kaczer. “A Compact Physics Analytical Model for
Hot-Carrier Degradation”. In: 2020 IEEE International Reliability Physics Symposium (IRPS). 2020, pp. 1–7. doi: 10.1109/IRPS45951.2020.9128327.
-
[MJC5] M. Jech, S. Tyaginov, B. Kaczer, J. Franco, D. Jabs, C. Jungemann, M. Waltl, and T. Grasser. “First–Principles Parameter–Free Modeling of n- and p-ET Hot-Carrier
Degradation”. In: 2019 IEEE International Electron Devices Meeting (IEDM). 2019, 24.1.1–24.1.4, Best Student Paper Award. doi: 10.1109/IEDM19573.2019.8993630.
-
[MJC6] A. Makarov, B. Kaczer, P. Roussel, A. Chasin, M. Vandemaele, G. Hellings, A.-M. El-Sayed, M. Jech, T. Grasser, D. Linten, and S. Tyaginov. “Stochastic
Modeling of Hot-Carrier Degradation in nFinFETs Considering the Impact of Random Traps and Random Dopants”. In: ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC). 2019,
pp. 262–265. doi: 10.1109/ESSDERC.2019.8901721.
-
[MJC7] A. Makarov, B. Kaczer, P. Roussel, A. Chasin, M. Vandemaele, G. Hellings, A.-M. El-Sayed, M. Jech, T. Grasser, D. Linten, and S. E. Tyaginov. “Simulation Study:
The Effect of Random Dopants and Random Traps on Hot-Carrier Degradation in nFinFETs”. In: Extended Abstracts of the International Conference on Solid State Devices and Materials (SSDM). 2019, pp. 609–610.
-
[MJC8] S. Tyaginov, A.-M. El-Sayed, A. Makarov, A. Chasin, H. Arimura, M. Vandemaele, M. Jech, E. Capogreco, L. Witters, A. Grill, A. De Keersgieter, G. Eneman,
D. Linten, and B. Kaczer. “Understanding and Physical Modeling Superior Hot-Carrier Reliability of Ge pNWFETs”. In: 2019 IEEE International Electron Devices Meeting (IEDM). 2019, pp. 21.3.1–21.3.4. doi: 10.1109/IEDM19573.2019.8993644.
-
[MJC9] S. E. Tyaginov, A. Chasin, A. Makarov, A.-M. El-Sayed, M. Jech, A. De Keersgieter, G. Eneman, M. Vandemaele, J. Franco, D. Linten, and B. Kaczer.
“Physics-based Modeling of Hot-Carrier Degradation in Ge NWFETs”. In: Extended Abstracts of the International Conference on Solid State Devices and Materials (SSDM). 2019, pp. 565–566.
-
[MJC10] S. E. Tyaginov, M. Jech, G. Rzepa, A. Grill, A.-M. El-Sayed, G. Pobegen, A. Makarov, and T. Grasser. “Border Trap Based Modeling of SiC Transistor Transfer
Characteristics”. In: Proceedings of the IEEE International Integrated Reliability Workshop (IIRW). 2018. doi: 10.1109/IIRW.2018.8727083.
-
[MJC11] Y. Illarionov, M. Waltl, M. Jech, J.-S. Kim, D. Akinwande, and T. Grasser. “Reliability of Black Phosphorus Field-Effect Transistors with Respect to
Bias-Temperature and Hot-Carrier Stress”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). 2017, 6A-6.1–6A-6.6. doi: 10.1109/IRPS.2017.7936338.
-
[MJC12] T. Knobloch, G. Rzepa, Y. Illarionov, M. Waltl, F. Schanovsky, M. Jech, B. Stampfer, M. M. Furchi, T. Müller, and T. Grasser. “Physical Modeling of the
Hysteresis in MoS2 Transistors”. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC). 2017, pp. 284–287. doi: 10.1109/ESSDERC.2017.8066647.
-
[MJC13] A. Makarov, S. E. Tyaginov, B. Kaczer, M. Jech, A. Chasin, A. Grill, G. Hellings, M. I. Vexler, D. Linten, and T. Grasser. “Hot-Carrier Degradation in FinFETs:
Modeling, Peculiarities, and Impact of Device Topology”. In: 2017 IEEE International Electron Devices Meeting (IEDM). Dec. 2017, pp. 13.1.1–13.1.4. doi: 10.1109/IEDM.2017.8268381.
-
[MJC14] G. Rzepa, J. Franco, A. Subirats, M. Jech, A. Chasin, A. Grill, M. Waltl, T. Knobloch, B. Stampfer, T. Chiarella, N. Horiguchi, L. Å. Ragnarsson, D. Linten,
B. Kaczer, and T. Grasser. “Efficient physical defect model applied to PBTI in high-κ stacks”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). 2017, XT-11.1-XT–11.6.
-
[MJC15] B. Ullmann, M. Jech, S. Tyaginov, M. Waltl, Y. Illarionov, A. Grill, K. Puschkarsky, H. Reisinger, and T. Grasser. “The Impact of Mixed Negative Bias Temperature
Instability and Hot Carrier stress on Single Oxide Defects”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). Apr. 2017, XT-10.1-XT–10.6. doi: 10.1109/IRPS.2017.7936424.
-
[MJC16] S. E. Tyaginov, A. Makarov, M. Jech, J. Franco, P. Sharma, B. Kaczer, and T. Grasser. “On the Effect of Interface Traps on the Carrier Distribution Function During
Hot-Carrier Degradation”. In: Proceedings of the IEEE International Integrated Reliability Workshop (IIRW. 2016, pp. 95–98. doi: 10.1109/IIRW.2016.7904911.
-
[MJC17] M. Jech, P. Sharma, S. Tyaginov, F. Rudolf, and T. Grasser. “The Limits of Applicability of the Analytic Model for Hot Carrier Degradation”. In: Extended
Abstracts of the International Conference on Solid State Devices and Materials (SSDM). 2015, PS.3–13.
-
[MJC18] P. Sharma, M. Jech, S. Tyaginov, F. Rudolf, K. Rupp, H. Enichlmair, J. Park, and T. Grasser. “Modeling of Hot-Carrier Degradation in LDMOS Devices Using a
Drift-Diffusion Based Approach”. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2015, pp. 60–63. doi: 10.1109/SISPAD.2015.7292258.
-
[MJC19] S. Tyaginov, M. Jech, P. Sharma, J. Franco, B. Kaczer, and T. Grasser. “On The Temperature Behavior of Hot-Carrier Degradation”. In: 2015 IEEE
International Integrated Reliability Workshop (IIRW). 2015, pp. 143–146. doi: 10.1109/IIRW.2015.7437088.