[1] T. Kimoto and J. A. Cooper. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. John Wiley & Sons, 2014. DOI: 10.1002/9781118313534.
[2] J. W. Palmour, S. Allen, B. Hull, E. Balkas, Y. Khlebnikov, and A. Burk. Current Progress in SiC Power MOSFETs and Materials. pages 23–26, 2017.
[3] X. She, A. Q. Huang, Ó. Lucía, and B. Ozpineci. Review of Silicon Carbide Power Devices and Their Applications. IEEE Transactions on Industrial Electronics, 64(10):8193–8205, 2017. DOI: 10.1109/TIE.2017.2652401.
[4] H. Moissan. Nouvelles Recherches Sur la Météorité de Cañon Diablo. Comptes Rendus, 139:773–86, 1904.
[5] E. G. Acheson. Production of Artificial Crystalline Carbonaceous Materials. United States Patent 492,767, 28.02.93, 1893.
[6] J. A. Lely. Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art und Menge der Eingebauten Verunreinigungen. Berichte der Deutschen Keramischen Gesellschaft, 32:229–236, 1955.
[7] Y. M. Tairov and V. F. Tsvetkov. General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes. Journal of Crystal Growth, 52(1):146–150, 1981. DOI: 10.1016/0022-0248(81)90184-6.
[8] D. L. Barrett, J. P. McHugh, H. M. Hobgood, R. H. Hopkins, P. G. McMullin, R. C. Clarke, and W. J. Choyke. Growth of Large SiC Single Crystals. Journal of Crystal Growth, 128(1-4):358–362, 1993. DOI: 10.1016/0022-0248(93)90348-z.
[9] M. F. Brady, W. H. Brixius, G. Fechko, R. C. Glass, D. Henshall, Jason R. Jenny, R. T. Leonard, D. P. Malta, Stephan G. Müller, Valeri F. Tsvetkov, and H. Carter Calvin. Status of large diameter sic crystal growth for electronic and optical applications. Materials Science Forum, 338:3–8, 2000. DOI: 10.4028/www.scientific.net/msf.338-342.3.
[10] G. L. Harris. Properties of Silicon Carbide. INSPEC, 1995.
[11] A. Saha and J. A. Cooper. A 1-kV 4H-SiC Power DMOSFET Optimized for Low On-Resistance. IEEE Transactions on Electron Devices, 54(10):2786–2791, 2007. DOI: 10.1109/TIE.2017.2652401.
[12] W. J. Choyke, H. Matsunami, and G. Pensl. Silicon Carbide: Recent Major Advances. Springer-Verlag Berlin Heidelberg, 2004. DOI: 10.1007/978-3-642-18870-1..
[13] R. Cheung. Silicon Carbide Microelectromechanical Systems for Harsh Environments. World Scientific, 2006.
[14] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns. Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor Device Technologies.Journal of Applied Physics, 76(3):1363–1398, 1994. DOI: 10.1063/1.358463.
[15] P. T. Landsberg. Basic Properties of Semiconductors. Elsevier, 2016.
[16] A. Shima, H. Shimizu, Y. Mori, M. Sagawa, K. Konishi, R. Fujita, T. Ishigaki, N. Tega, K. Kobayashi, S. Sato, and Y. Shimamato. 3.3 kV 4H–SiC DMOSFET with Highly Reliable Gate Insulator and Body Diode. Materials Science Forum, 897:493–496, 2016. DOI: 10.4028/www.scientific.net/MSF.897.493.
[17] V. Soler, M. Cabello, M. Berthou, J. Montserrat, J. Rebollo, P. Godignon, A. Mihaila, M. R. Rogina, A. Rodríguez, and J. Sebastián. High-Voltage 4H–SiC Power MOSFETs With Boron-Doped Gate Oxide. IEEE Transactions on Industrial Electronics, 64(11):8962–8970, 2017. DOI: 10.1109/tie.2017.2723865.
[18] C. Hammond. The Basics of Crystallography and Diffraction, volume 21. Oxford University Press, 2015.
[19] C. I. Harris and V. V. Afanas'ev. SiO2 as an Insulator for SiC Devices. Microelectronic Engineering, 36(1-4):167–174, 1997. DOI: 10.1016/s0167-9317(97)00041-5.
[20] P. G. Neudeck, R. S. Okojie, and L.-Y. Chen. High-Temperature Electronics - A Role for Wide Bandgap Semiconductors? Proceedings of the IEEE, 90(6):1065–1076, 2002. DOI: 10.1109/jproc.2002.1021571.
[21] W. Suttrop, G. Pensl, W. J. Choyke, R. Stein, and S. Leibenzeder. Hall Effect and Infrared Absorption Measurements on Nitrogen Donors in 6H-Silicon Carbide. Journal of Applied Physics, 72(8):3708–3713, 1992. DOI: 10.1063/1.352318.
[22] J. B. Casady and R. Wayne Johnson. Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid-State Electronics, 39(10):1409–1422, 1996. DOI: 10.1016/0038-1101(96)00045-7.
[23] J. A. Cooper and A. Agarwal. SiC Power-Switching Devices-The Second Electronics Revolution? Proceedings of the IEEE, 90(6):956–968, 2002. DOI: 10.1109/jproc.2002.1021561.
[24] C. Kittel, P. McEuen, and P. McEuen. Introduction to Solid State Physics, volume 8. Wiley, 1996.
[25] G. Pensl, H. Morkoc, B. Monemar, and E. Janzen. Silicon Carbide, III-Nitrides and Related Materials. I. Materials Science Forum, 264:672, 1997. DOI: 10.4028/www.scientific.net/MSF.264-268.
[26] W. M. Chen, N. T. Son, E. Janzen, D. M. Hofmann, and B. K. Meyer. Effective Masses in SiC Determined by Cyclotron Resonance Experiments. Physica Status Solidi (a), 162(1):79–93, 1997. DOI: 10.1002/1521-396x(199707)162:1<79::aid-pssa79>3.3.co;2-4.
[27] S. M. Sze. Semiconductor Devices: Physics and Technology. John Wiley & Sons, 2008.
[28] A. Elasser and T. P. Chow. Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems. Proceedings of the IEEE, 90(6):969–986, 2002. DOI: 10.1109/jproc.2002.1021562.
[29] W. J. Choyke, R. P. Devaty, L. L. Clemen, M. F. MacMillan, and M. Yoganathan. Optical Properties and Characterization of SiC and III-V Nitrides. Silicon Carbide and Related Materials 1995, 142:257–262, 1996.
[30] G. Wellenhofer and U. Rössler. Global band structure and near-band-edge states. Physica Status Solidi (b), 202(1):107–123, 1997. DOI: 10.1002/1521-3951(199707)202:1<107::aid-pssb107>3.0.co;2-9.
[31] R. R. Lamichhane, N. Ericsson, S. Frank, C. Britton, L. Marlino, A. Mantooth, M. Francis, P. Shepherd, M. Glover, S. Perez, T. McNutt, B. Whitaker, and Z. Cole. A Wide Bandgap Silicon Carbide (SiC) Gate Driver for High-Temperature and High-Voltage Applications. In Proceedings of the IEEE International Symposium on Power Semiconductor Devices & IC’s (ISPSD), pages 414–417, 2014. DOI: 10.1109/ispsd.2014.6856064.
[32] Z. Wang, X. Shi, L. M. Tolbert, F. F. Wang, Z. Liang, D. Costinett, and B. J. Blalock. A High Temperature Silicon Carbide MOSFET Power Module with Integrated Silicon-on-Insulator-Based Gate Drive. IEEE Transactions on Power Electronics, 30(3):1432–1445, 2015. DOI: 10.1109/ecce.2014.6953997.
[33] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices. IEEE Transactions on Power Electronics, 29(5):2606–2617, 2014. DOI: 10.1109/tpel.2013.2279950.
[34] M. Östling, R. Ghandi, and C.-M. Zetterling. Sic power devices—present status, applications and future perspective. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs (ISPSD), pages 10–15, 2011. DOI: 10.1109/ISPSD.2011.5890778.
[35] R. J. Trew. Sic and gan transistors-is there one winner for microwave power applications? Proceedings of the IEEE, 90(6):1032–1047, 2002. DOI: 10.1109/JPROC.2002.1021568.
[36] B. J. Baliga. Fundamentals of Power Semiconductor Devices. Springer-Verlag US, 2008. DOI: 10.1007/978-0-387-47314-7.
[37] H. Amano, S. Kamiyama, and I. Akasaki. Impact of Low-Temperature Buffer Layers on Nitride-Based Optoelectronics. Proceedings of the IEEE, 90(6):1015–1021, 2002. DOI: 10.1109/jproc.2002.1021566.
[38] S. Dimitrijev, J. Han, H. A. Moghadam, and A. Aminbeidokhti. Power-Switching Applications Beyond Silicon: Status and Future Prospects of SiC and GaN Devices. MRS Bulletin, 40(5):399–405, 2015. DOI: 10.1557/mrs.2015.89.
[39] W. Wondrak, R. Held, E. Niemann, and U. Schmid. SiC Devices for Advanced Power and High-Temperature Applications. IEEE Transactions on Industrial Electronics, 48(2):307–308, 2001. DOI: 10.1109/41.915409.
[40] K. C. Reinhardt and M. A. Marciniak. Wide-Bandgap Power Electronics for the More Electric Aircraft. In Proceedings of the Intersociety Energy Conversion Engineering Conference (IECEC), pages 127–132, 1996. DOI: 10.1109/iecec.1996.552858.
[41] A. S. Bakin, S. I. Dorozhkin, and A. S. Zubrilov. 6H- and 4H-Silicon Carbide for Device Applications. In Proceedings of the International High Temperature Electronics Conference (HITEC), pages 253–256, 1998. DOI: 10.1109/HITEC.1998.676798.
[42] J. Millan, P. Godignon, X. Perpina, A. Pérez-Tomás, and J. Rebollo. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Transactions on Power Electronics, 29(5):2155–2163, 2014. DOI: 10.1109/TPEL.2013.2268900.
[43] R. C. Clarke and J. W. Palmour. SiC Microwave Power Technologies. Proceedings of the IEEE, 90(6):987–992, 2002. DOI: 10.1109/JPROC.2002.1021563.
[44] G. S. May and C. J. Spanos. Fundamentals of Semiconductor Manufacturing and Process Control. John Wiley & Sons, 2006.
[45] R. Courtland. Moore’s Law’s Next Step: 10 Nanometers. IEEE Spectrum, 54(1):52–53, 2017. DOI: 10.1109/MSPEC.2017.7802750.
[46] G. Moore. Moore’s law. Electronics Magazine, 38(8):114, 1965.
[47] R. R. Schaller. Moore’s Law: Past, Present and Future. IEEE Spectrum, 34(6):52–59, 1997. DOI: 10.1109/6.591665.
[48] C. C. Mann. The End of Moore’s Law? Technology Review, 103(3):42–48, 2000.
[49] B. El-Kareh. Fundamentals of Semiconductor Processing Technology. Springer-Verlag New York, 1995. DOI: 10.1007/978-1-4615-2209-6.
[50] C.-M. Zetterling. Process Technology for Silicon Carbide Devices, volume 2. INSPEC, 2002.
[51] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag Wien, 1984. DOI: 10.1007/978-3-7091-8752-4.
[52] H. K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Transactions on Electron Devices, 11(10):455–465, 1964. DOI: 10.1109/T-ED.1964.15364.
[53] Silvaco’s victory process simulator. https://www.silvaco.com/products/tcad/process_simulation/victory_process/victory_process.html. (accessed September 5, 2018).
[54] Silvaco’s victory device simulator. https://www.silvaco.com/products/tcad/device_simulation/victory_device/victory_device.html. (accessed September 5, 2018).
[55] S. Dhar, Y. W. Song, L. C. Feldman, T. Isaacs-Smith, C. C. Tin, J. R. Williams, G. Chung, T. Nishimura, D. Starodub, T. Gustafsson, and E. Garfunkel. Effect of Nitric Oxide Annealing on the Interface Trap Density Near the Conduction Bandedge of 4H–SiC at the Oxide/(1120) 4H–SiC Interface. Applied Physics Letters, 84(9):1498–1500, 2004. DOI: 10.1063/1.1651325.
[56] W. M. Haynes. CRC Handbook of Chemistry and Physics. CRC press, 2014.
[57] E. Rosencher, A. Straboni, S. Rigo, and G. Amsel. An O18 Study of the Thermal Oxidation of Silicon in Oxygen. Applied Physics Letters, 34(4):254–256, 1979. DOI: 10.1063/1.90771.
[58] T. Hosoi, D. Nagai, T. Shimura, and H. Watanabe. Exact Evaluation of Interface-Reaction-Limited Growth in Dry and Wet Thermal Oxidation of 4H–SiC (0001) Si-face Surfaces. Japanese Journal of Applied Physics, 54(9):098002, 2015. DOI: 10.7567/jjap.54.098002.
[59] J. Schmitt and R. Helbig. Oxidation of 6H-SiC as Function of Doping Concentration and Temperature. Journal of The Electrochemical Society, 141(8):2262–2265, 1994. DOI: 10.1149/1.2055100.
[60] I. C. Vickridge, J. J. Ganem, G. Battistig, and E. Szilagyi. Oxygen Isotopic Tracing Study of the Dry Thermal Oxidation of 6H-SiC. Nuclear Instruments and Methods in Physics Research Section B, 161:462–466, 2000. DOI: 10.1016/s0168-583x(99)00931-3.
[61] J. M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke. Theoretical Study of the Mechanism of Dry Oxidation of 4H–SiC. Physical Review B, 71(23):235321, 2005. DOI: 10.1103/physrevb.71.235321.
[62] B. E. Deal and A. S. Grove. General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics, 36(12):3770–3778, 1965. DOI: 10.1063/1.1713945.
[63] Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams. Modified Deal Grove Model for the Thermal Oxidation of Silicon Carbide. Journal of Applied Physics, 95(9):4953–4957, 2004. DOI: 10.1063/1.1690097.
[64] H. Z. Massoud, J. D. Plummer, and E. A. Irene. Thermal Oxidation of Silicon in Dry Oxygen Growth-Rate Enhancement in the Thin Regime I. Experimental Results. Journal of the Electrochemical Society, 132(11):2685–2693, 1985. DOI: 10.1149/1.2113648.
[65] H. Z. Massoud, J. D. Plummer, and E. A. Irene. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime II. Physical Mechanisms. Journal of the Electrochemical Society, 132(11):2693–2700, 1985. DOI: 10.1149/1.2113649.
[66] T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida. Oxide Growth Rate Enhancement of Silicon Carbide (0001) Si-faces in Thin Oxide Regime. Japanese Journal of Applied Physics, 47(10R):7803, 2008. DOI: 10.1143/jjap.47.7803.
[67] T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida. Oxygen-Partial-Pressure Dependence of SiC Oxidation Rate Studied by In Situ Spectroscopic Ellipsometry. Materials Science Forum, 600:667–670, 2009. DOI: 10.4028/www.scientific.net/msf.600-603.667.
[68] T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida. Growth Rate Enhancement of (0001)-Face Silicon–Carbide Oxidation in Thin Oxide Regime. Japanese Journal of Applied Physics, 46(8L):L770, 2007. DOI: 10.1143/jjap.46.l770.
[69] Y. Hijikata, H. Yaguchi, and S. Yoshida. A Kinetic Model of Silicon Carbide Oxidation Based on the Interfacial Silicon and Carbon Emission Phenomenon. Applied Physics Express, 2(2):021203, 2009. DOI: 10.1143/apex2.021203.
[70] D. Goto, Y. Hijikata, S. Yagi, and H. Yaguchi. Differences in SiC Thermal Oxidation Process Between Crystalline Surface Orientations Observed by In-Situ Spectroscopic Ellipsometry. Journal of Applied Physics, 117(9):095306, 2015. DOI: 10.1063/1.4914050.
[71] Y. Hijikata, R. Asafuji, R. Konno, Y. Akasaka, and R. Shinoda. Si and C Emission Into the Oxide Layer During the Oxidation of Silicon Carbide and its Influence on the Oxidation Rate. AIP Advances, 5(6):067128, 2015. DOI: 10.1063/1.4922536.
[72] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Growth Rates of Dry Thermal Oxidation of 4H-Silicon Carbide. Journal of Applied Physics, 120(13):135705, 2016. DOI: 10.1063/1.4964688.
[73] V. Šimonka, G. Nawratil, A. Hössinger, J. Weinbub, and S. Selberherr. Anisotropic Interpolation Method of Silicon Carbide Oxidation Growth Rates for Three-Dimensional Simulation. Solid-State Electronics, 128:135–140, 2017. DOI: 10.1016/j.sse.2016.10.032.
[74] H. Kageshima, K. Shiraishi, and M. Uematsu. Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission. Japanese Journal of Applied Physics, 38(9A):L971, 1999. DOI: 10.1143/JJAP.38.L971.
[75] D. Goto and Y. Hijikata. Unified Theory of Silicon Carbide Oxidation Based on the Si and C Emission Model. Journal of Physics D, 49(22):225103, 2016. DOI: 10.1088/0022-3727/49/22/225103.
[76] D. A. Newsome, D. Sengupta, H. Foroutan, M. F. Russo, and A. C. T. van Duin. Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I. The Journal of Physical Chemistry C, 116(30):16111–16121, 2012. DOI: 10.1021/jp306391p.
[77] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. ReaxFF Reactive Molecular Dynamics Study of Orientation Dependence of Initial Silicon Carbide Oxidation. The Journal of Physical Chemistry A, 121(46):8791–8798, 2017. DOI: 10.1021/acs.jpca.7b08983.
[78] H. Z. Massoud and J. D. Plummer. Analytical Relationship for the Oxidation of Silicon in Dry Oxygen in the Thin-Film Regime. Journal of Applied Physics, 62(8):3416–3423, 1987. DOI: 10.1063/1.339305.
[79] S. Ogawa and Y. Takakuwa. Rate-Limiting Reactions of Growth and Decomposition Kinetics of Very Thin Oxides on Si (001) Surfaces Studied by Reflection High-Energy Electron Diffraction Combined with Auger Electron Spectroscopy. Japanese Journal of Applied Physics, 45(9R):7063, 2006. DOI: 10.1143/JJAP.45.7063.
[80] M. Uematsu, H. Kageshima, and K. Shiraishi. Simulation of Wet Oxidation of Silicon Based on the Interfacial Silicon Emission Model and Comparison with Dry Oxidation. Journal of Applied Physics, 89(3):1948–1953, 2001. DOI: 10.1063/1.1335828.
[81] Y. Hijikata, H. Yaguchi, S. Yoshida, Y. Takata, K. Kobayashi, H. Nohira, and T. Hattori. Characterization of Oxide Films on 4H–SiC Epitaxial (000-1) Faces by High-Energy-Resolution Photoemission Spectroscopy: Comparison Between Wet and Dry Oxidation. Journal of Applied Physics, 100(5):053710, 2006. DOI: 10.1063/1.2345471.
[82] Y Hijikata, S. Yagi, H. Yaguchi, and S. Yoshida. Thermal Oxidation Mechanism of Silicon Carbide. In Physics and Technology of Silicon Carbide Devices. InTech, 2012. DOI: 10.5772/50748.
[83] M. Uematsu, H. Kageshima, and K. Shiraishi. Unified Simulation of Silicon Oxidation Based on the Interfacial Silicon Emission Model. Japanese Journal of Applied Physics, 39(7B):L699, 2000. DOI: 10.1143/JJAP.39.L699.
[84] M. Schürmann, S. Dreiner, U. Berges, and C. Westphal. Structure of the Interface Between Ultrathin SiO2 Films and 4H–SiC (0001). Physical Review B, 74(3):035309, 2006. DOI: 10.1103/PhysRevB.74.035309.
[85] P. Fiorenza and V. Raineri. Reliability of Thermally Oxidized SiO2/4H–SiC by Conductive Atomic Force Microscopy. Applied Physics Letters, 88(21):2112, 2006. DOI: 10.1063/1.2207991.
[86] N. Tokura, K. Hara, T. Miyajima, H. Fuma, and K. Hara. Current-Voltage and Capacitance-Voltage Characteristics of Metal/Oxide/6H-Silicon Carbide Structure. Japanese Journal of Applied Physics, 34(10R):5567, 1995. DOI: 10.1143/JJAP.34.5567.
[87] J. J. Ahn, Y. D. Jo, S. C. Kim, J. H. Lee, and S. M. Koo. Crystallographic Plane-Orientation Dependent Atomic Force Microscopy-Based Local Oxidation of Silicon Carbide. Nanoscale Research Letters, 6(1):1–5, 2011. DOI: 10.1186/1556-276x-6-235.
[88] K. Christiansen and R. Helbig. Anisotropic Oxidation of 6H-SiC. Journal of Applied Physics, 79(6):3276–3281, 1996. DOI: 10.1063/1.361225.
[89] S. K. Gupta and J. Akhtar. Thermal Oxidation of Silicon Carbide (SiC)-Experimentally Observed Facts. INTECH, 2011. DOI: 10.5772/20465.
[90] K. Kakubari, R. Kuboki, Y. Hijikata, H. Yaguchi, and S. Yoshida. Real Time Observation of SiC Oxidation Using an In Situ Ellipsometer. Materials Science Forum, 527:1031–1034, 2006. DOI: 10.4028/www.scientific.net/MSF.527-529.1031.
[91] J. N. Shenoy, M. K. Das, J. A. Cooper Jr., M. R. Melloch, and J. W. Palmour. Effect of Substrate Orientation and Crystal Anisotropy on the Thermally Oxidized SiO2/SiC Interface. Journal of Applied Physics, 79(6):3042–3045, 1996. DOI: 10.1063/1.361244.
[92] V. Šimonka, G. Nawratil, A. Hössinger, J. Weinbub, and S. Selberherr. Direction Dependent Three-Dimensional Silicon Carbide Oxidation Growth Rate Calculations. In Proceedings of the Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pages 226–229, 2016. DOI: 10.1109/ULIS.2016.7440094.
[93] D. Potter. Computational Physics. Wiley, 1973.
[94] J. Thijssen. Computational Physics. Cambridge University Press, 2007.
[95] R. Macey, G. Oster, and T. Zahley. Berkeley Madonna User’s Guide. University of California, 2009.
[96] S. Arrhenius. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Wilhelm Engelmann, 1889.
[97] J. H. Wilkinson, F. L. Bauer, and C. Reinsch. Linear Algebra, volume 2. Springer-Verlag Berlin Heidelberg, 1971.
[98] S. R. Brown and L. E. Melamed. Experimental Design and Analysis. Number 74. Sage, 1990.
[99] D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2017.
[100] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. SIAM, 1995.
[101] H. Kageshima, M. Uematsu, and K. Shiraishi. Theory of Thermal Si Oxide Growth Rate Taking Into Account Interfacial Si Emission Effects. Microelectronic Engineering, 59(1):301–309, 2001. DOI: 10.1016/S0167-9317(01)00614-1.
[102] Y. Hijikata. Physics and Technology of Silicon Carbide Devices. InTech, 2013. DOI: 10.5772/3428.
[103] E. A. Irene, H. Z. Massoud, and E. Tierney. Silicon Oxidation Studies: Silicon Orientation Effects on Thermal Oxidation. Journal of the Electrochemical Society, 133(6):1253–1256, 1986. DOI: 10.1149/1.2108829.
[104] Y. Hijikata, H. Yaguchi, and S. Yoshida. Model Calculations of SiC Oxide Growth Rate at Various Oxidation Temperatures Based on the Silicon and Carbon Emission Model. Materials Science Forum, 645:809–812, 2010. DOI: 10.4028/www.scientific.net/MSF.645-648.809.
[105] V. Šimonka, G. Nawratil, A. Hössinger, J. Weinbub, and S. Selberherr. Geometrical Aspects of Three-Dimensional Silicon Carbide Oxidation Growth Rate Modeling. In Book of Abstracts of the Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pages 128–129, 2016.
[106] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Three-Dimensional Growth Rate Modeling and Simulation of Silicon Carbide Thermal Oxidation. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 233–237, 2016. DOI: 10.1109/SISPAD.2016.7605190.
[107] C. T. Banzhaf, M. Grieb, A. Trautmann, A. J. Bauer, and L. Frey. Characterization of Diverse Gate Oxides on 4H-SiC 3D Trench-MOS Structures. Materials Science Forum, 740:691–694, 2013. DOI: 10.4028/www.scientific.net/MSF.740-742.691.
[108] T. Hosoi, K. Konzono, Y. Uenishi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe. Investigation of Surface and Interface Morphology of Thermally Grown SiO2 Dielectrics on 4H-SiC (0001) Substrates. Materials Science Forum, 679:342–345, 2011. DOI: 10.4028/www.scientific.net/msf.679-680.342.
[109] I. Vickridge, J. Ganem, Y. Hoshino, and I. Trimaille. Growth of SiO2 on SiC by Dry Thermal Oxidation: Mechanisms. Journal of Physics D, 40(20):6254, 2007. DOI: 10.1088/0022-3727/40/20/S10.
[110] J. Woerle, V. Šimonka, E. Müller, A. Hössinger, H. Sigg, S. Selberherr, J. Weinbub, M. Camarda, and U. Grossner. Investigating Orientation-Dependent Oxidation of Macrosteps on 4H-SiC Epilayers. In Proceedings of the European Conference on Silicon Carbide and Related Materials (ECSCRM), 2018, in print.
[111] H. Matsunami and T. Kimoto. Step-Controlled Epitaxial Growth of SiC: High Quality Homoepitaxy. Materials Science and Engineering: R, 20(3):125–166, 1997. DOI: 10.1016/S0927-796X(97)00005-3.
[112] H. Fujiwara, T. Kimoto, T. Tojo, and H. Matsunami. Characterization of In-Grown Stacking Faults in 4H–SiC (0001) Epitaxial Layers and its Impacts on High-Voltage Schottky Barrier Diodes. Applied Physics Letters, 87(5):051912, 2005. DOI: 10.1063/1.1997277.
[113] W. Chen and M. A. Capano. Growth and Characterization of 4H-SiC Epilayers on Substrates with Different Off-Cut Angles. Journal of Applied Physics, 98(11):114907, 2005. DOI: 10.1063/1.2137442.
[114] G. Ciccotti, M. Ferrario, and C. Schuette. Molecular Dynamics Simulation. Entropy, 16:233, 2014.
[115] A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard. ReaxFF: A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001. DOI: 10.1021/jp004368u.
[116] T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, and A. C. T. van Duin. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. npj Computational Materials, 2:15011, 2016. DOI: 10.1038/npjcompumats.2015.11.
[117] G.-Y. Li, J.-X. Ding, H. Zhang, C.-X. Hou, F. Wang, Y.-Y. Li, and Y.-H. Liang. ReaxFF Simulations of Hydrothermal Treatment of Lignite and its Impact on Chemical Structures. Fuel, 154:243–251, 2015. DOI: 10.1016/j.fuel.2015.03.082.
[118] S. Han, X. Li, F. Nie, M. Zheng, X. Liu, and L. Guo. Revealing the Initial Chemistry of Soot Nanoparticle Formation by ReaxFF Molecular Dynamics Simulations. Energy & Fuels, 31:8434–8444, 2017. DOI: 10.1021/acs.energyfuels.7b01194.
[119] M. M. Islam, A. Ostadhossein, O. Borodin, A. T. Yeates, W. W. Tipton, R. G. Hennig, N. Kumar, and A. C. T. van Duin. ReaxFF Molecular Dynamics Simulations on Lithiated Sulfur Cathode Materials. Physical Chemistry Chemical Physics, 17(5):3383–3393, 2015. DOI: 10.1039/c4cp04532g.
[120] S. S. Han, S.-H. Choi, and A. C. T. van Duin. Molecular Dynamics Simulations of Stability of Metal-Organic Frameworks Against H2O Using the ReaxFF Reactive Force Field. Chemical Communications, 46(31):5713–5715, 2010. DOI: 10.1002/chin.201043001.
[121] J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. Van Duin, and S. A. Pandit. A Reactive Molecular Dynamics Simulation of the Silica-Water Interface. The Journal of Chemical Physics, 132(17):174704, 2010. DOI: 10.1063/1.3407433.
[122] A. D. Kulkarni, D. G. Truhlar, S. G. Srinivasan, A. C. T. van Duin, P. Norman, and T. E. Schwartzentruber. Oxygen Interactions with Silica Surfaces: Coupled Cluster and Density Functional Investigation and the Development of a New ReaxFF Potential. The Journal of Physical Chemistry C, 117(1):258–269, 2012. DOI: 10.1021/jp3086649.
[123] H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama. Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques. Parallel Computing, 38(4):245–259, 2012. DOI: 10.1016/j.parco.2011.08.005.
[124] Vienna Scientific Cluster. http://vsc.ac.at/. (accessed September 5, 2017).
[125] T. Seyller. Passivation of Hexagonal SiC Surfaces by Hydrogen Termination. Journal of Physics: Condensed Matter, 16(17):S1755, 2004. DOI: 10.1088/0953-8984/16/17/016.
[126] H. J. C. Berensen, J. P. M. Postma, W. van Gunsteren, A. DiNola, and J. R. Haak. Molecular Dynamics with Coupling to an External Bath. Journal of Chemical Physics, 81:3684, 1984. DOI: 10.1063/1.448118.
[127] D. A. Newsome, D. Sengupta, and A. C. T. van Duin. High-Temperature Oxidation of SiC-Based Composite: Rate Constant Calculation from ReaxFF MD Simulations, Part II. The Journal of Physical Chemistry C, 117(10):5014–5027, 2013. DOI: 10.1021/jp307680t.
[128] A. Hallén and M. Linnarsson. Ion Implantation Technology for Silicon Carbide. Surface and Coatings Technology, 306:190–193, 2016. DOI: 10.1016/j.surfcoat.2016.05.075.
[129] C. A. Fisher, R. Esteve, S. Doering, M. Roesner, M. de Biasio, M. Kraft, W. Schustereder, and R. Rupp. An Electrical and Physical Study of Crystal Damage in High-Dose Al-and N-implanted 4H–SiC. Materials Science Forum, 897:411–414, 2017. DOI: 10.4028/www.scientific.net/MSF.897.411.
[130] T. Kimoto, O. Takemura, H. Matsunami, T. Nakata, and M. Inoue. Al+ and B+ implantations into 6h-sic epilayers and application to pn junction diodes. Journal of Electronic Materials, 27(4):358–364, 1998. DOI: 10.1007/s11664-998-0415-6.
[131] D. K. Ferry. Semiconductors. Macmillan Publishing Company, 1991.
[132] K. Seeger. Semiconductor Physics. Springer-Verlag Berlin Heidelberg, 2004. DOI: 10.1007/978-3-662-09855-4.
[133] J. S. Blakemore. Semiconductor Statistics. Courier Corporation, 2002.
[134] N. S. Saks, A. K. Agarwal, S. H. Ryu, and J. W. Palmour. Low-Dose Aluminum and Boron Implants in 4H and 6H Silicon Carbide. Journal of Applied Physics, 90(6):2796–2805, 2001. DOI: 10.1063/1.1392958.
[135] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Modeling of Electrical Activation Ratios of Phosphorus and Nitrogen Doped Silicon Carbide. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 125–128, 2017. DOI: 10.23919/SISPAD.2017.8085280.
[136] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Modeling and Simulation of Electrical Activation of Acceptor-Type Dopants in Silicon Carbide. Materials Science Forum, 924:192–195, 2018. DOI: 10.4028/www.scientific.net/MSF.924.192.
[137] F. Schmid, M. Laube, G. Pensl, G. Wagner, and M. Maier. Electrical Activation of Implanted Phosphorus Ions in [0001] and [11-20]-Oriented 4H–SiC. Journal of Applied Physics, 91(11):9182–9186, 2002. DOI: 10.4028/www.scientific.net/msf.389-393.787.
[138] M. Laube, F. Schmid, G. Pensl, G. Wagner, M. Linnarsson, and M. Maier. Electrical Activation of High Concentrations of N+ and P+ Ions Implanted Into 4H–SiC. Journal of Applied Physics, 92(1):549–554, 2002. DOI: 10.1063/1.1479462.
[139] V. Heera, D. Panknin, and W. Skorupa. p-Type Doping of SiC by High Dose Al Implantation—Problems and Progress. Applied Surface Science, 184(1):307–316, 2001. DOI: 10.1016/S0169-4332(01)00510-4.
[140] F. Schmid and G. Pensl. Comparison of the Electrical Activation of P+ and N+ Ions Co-Implanted Along with Si+ or C+ Ions into 4H–SiC. Applied Physics Letters, 84(16):3064–3066, 2004. DOI: 10.1063/1.1707220.
[141] T. Troffer, C. Peppermüller, G. Pensl, K. Rottner, and A. Schöner. Phosphorus-Related Donors in 6H-SiC Generated by Ion Implantation. Journal of Applied Physics, 80(7):3739–3743, 1996. DOI: 10.1063/1.363325.
[142] M. V. Rao, J. B. Tucker, M. C. Ridgway, O. W. Holland, N. Papanicolaou, and J. Mittereder. Ion-Implantation in Bulk Semi-Insulating 4H–SiC. Journal of Applied Physics, 86(2):752–758, 1999. DOI: 10.1063/1.370799.
[143] T. Tsirimpis, M. Krieger, H. B. Weber, and G. Pensl. Electrical Activation of B+-Ions Implanted into 4H–SiC. Materials Science Forum, 645:697–700, 2010. DOI: 10.4028/www.scientific.net/msf.645-648.697..
[144] M. A. Capano, J. A. Cooper Jr., M. R. Melloch, A. Saxler, and W. C. Mitchel. Ionization Energies and Electron Mobilities in Phosphorus and Nitrogen-Implanted 4H-Silicon Carbide. Journal of Applied Physics, 87(12):8773–8777, 2000. DOI: 10.4028/www.scientific.net/msf.338-342.703.
[145] A. Parisini, M. Gorni, A. Nath, L. Belsito, M. V. Rao, and R. Nipoti. Remarks on the Room Temperature Impurity Band Conduction in Heavily Al+ Implanted 4H–SiC. Journal of Applied Physics, 118(3):035101, 2015. DOI: 10.1063/1.4926751.
[146] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami. Electronic behaviors of high-dose phosphorus-ion implanted 4h–sic (0001). Journal of Applied Physics, 96(1):224–228, 2004. DOI: 10.1063/1.1756213.
[147] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H. P. Strunk, and M. Maier. Doping of sic by implantation of boron and aluminum. Physica Status Solidi (a), 162(1):277–298, 1997. DOI: 10.1002/1521-396x(199707)162:1<277::aid-pssa277>3.0.co;2-c.
[148] J. M. Bluet, J. Pernot, J. Camassel, S. Contreras, J. L. Robert, J. F. Michaud, and T. Billon. Activation of Aluminum Implanted at High Doses in 4H–SiC. Journal of Applied Physics, 88(4):1971–1977, 2000. DOI: 10.1063/1.1305904.
[149] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Modeling and Simulation of Electrical Activation of Acceptor-Type Dopants in Silicon Carbide. In Proceedings of the International Conference on Silicon Carbide and Related Materials (ICSCRM), page 2756130, 2017.
[150] A. F. Hayes. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Press, 2013.
[151] T. Kimoto and N. Inoue. Nitrogen Ion Implantation into α-SiC Epitaxial Layers. Physica Status Solidi (a), 162(1):263–276, 1997. DOI: 10.1002/1521-396x(199707)162:1<263::aid-pssa263>3.0.co;2-w.
[152] N. S. Saks, A. V. Suvorov, and D. C. Capell. High Temperature High-Dose Implantation of Aluminum in 4H–SiC. Applied Physics Letters, 84(25):5195–5197, 2004. DOI: 10.1063/1.1764934.
[153] M. A. Capano, S. Ryu, M. R. Melloch, J. A. Cooper Jr., and M. R. Buss. Dopant Activation and Surface Morphology of Ion Implanted 4H-and 6H-Silicon Carbide. Journal of Electronic Materials, 27(4):370–376, 1998. DOI: 10.1007/s11664-998-0417-4.
[154] V. Šimonka, A. Hössinger, J. Weinbub, and S. Selberherr. Empirical Model for Electrical Activation of Aluminum-and Boron-Implanted Silicon Carbide. IEEE Transactions on Electron Devices, 65(2):674–679, 2018. DOI: 10.1109/TED.2017.2786086.
[155] J. Weisse, M. Hauck, T. Sledziewski, M. Tschiesche, M. Krieger, A. Bauer, H. Mitlehner, L. Frey, and T. Erlbacher. Analysis of Compensation Effects in Aluminum-Implanted 4H–SiC Devices. Materials Science Forum, 924:184–187, 2018. DOI: 10.4028/www.scientific.net/MSF.924.184.
[156] R. Nipoti, A. Carnera, G. Alfieri, and L. Kranz. About the Electrical Activation of 1×1020 cm-3 Ion Implanted Al in 4H–SiC at Annealing Temperatures in the Range 1500-1950°C. Materials Science Forum, 924:333–338, 2018. DOI: 10.4028/www.scientific.net/MSF.924.333.
[157] P. Fedeli, M. Gorni, A. Carnera, A. Parisini, G. Alfieri, U. Grossner, and R. Nipoti. 1950°C Post Implantation Annealing of Al+ Implanted 4H–SiC: Relevance of the Annealing Time. ECS Journal of Solid State Science and Technology, 5(9):P534–P539, 2016. DOI: 10.1149/2.0361609jss.
[158] V. Šimonka, A. Hössinger, S. Selberherr, and J. Weinbub. Investigation of Post-Implantation Annealing for Phosphorus-Implanted 4H-Silicon Carbide. In Proceedings of the International Conference on Microelectronic Devices and Technologies (MicDAT), pages 42–44, 2018.
[159] V. Šimonka, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. Transient Model for Electrical Activation of Aluminium and Phosphorus-Implanted Silicon Carbide. Journal of Applied Physics, 123(23):235701, 2018. DOI: 10.1063/1.5031185.
[160] A. Parisini and R. Nipoti. Analysis of the Hole Transport Through Valence Band States in Heavy Al Doped 4H–SiC by Ion Implantation. Journal of Applied Physics, 114(24):243703, 2013. DOI: 10.1063/1.4852515.
[161] J. Senzaki, K. Fukuda, and K. Arai. Influences of Postimplantation Annealing Conditions on Resistance Lowering in High-Phosphorus-Implanted 4H–SiC. Journal of Applied Physics, 94(5):2942–2947, 2003. DOI: 10.1063/1.1597975.
[162] R. Nipoti, R. Scaburri, A. Hallén, and A. Parisini. Conventional Thermal Annealing for a More Efficient p-type Doping of Al+ Implanted 4H-SiC. Journal of Materials Research, 28(1):17–22, 2013. DOI: 10.1557/jmr.2012.207.
[163] W. Hailei, S. Guosheng, Y. Ting, Y. Guoguo, W. Lei, Z. Wanshun, L. Xingfang, Z. Yiping, and W. Jialiang. Effect of Annealing Process on the Surface Roughness in Multiple Al Implanted 4H–SiC. Journal of Semiconductors, 32(7):072002, 2011. DOI: 10.1088/1674-4926/32/7/072002.
[164] S. G. Sundaresan, M. V. Rao, Y.-l. Tian, M. C. Ridgway, J. A. Schreifels, and J. J. Kopanski. Ultrahigh-Temperature Microwave Annealing of Al+- and P+- Implanted 4H–SiC. Journal of Applied Physics, 101(7):073708, 2007. DOI: 10.1063/1.2717016.
[165] B. Wendroff. Theoretical Numerical Analysis. Elsevier, 2014.
[166] T. Kimoto, K. Kawahara, N. Kaji, H. Fujihara, and J. Suda. Ion Implantation Technology in SiC for High-Voltage/High-Temperature Devices. In Proceedings of the International Workshop on Junction Technology (IWJT), pages 54–58, 2016. DOI: 10.1109/iwjt.2016.7486673.
[167] R. Nipoti, A. Parisini, G. Sozzi, M. Puzzanghera, A. Parisini, and A. Carnera. Structural and Functional Characterizations of Al+ Implanted 4H–SiC Layers and Al+ Implanted 4H–SiC pn Junctions after 1950°C Post Implantation Annealing. ECS Journal of Solid State Science and Technology 5(10):621-626, 2016. DOI: 10.1149/2.0211610jss.