next up previous index
Next: G Rational Padé Approximations Up: Dissertation Christoph Wasshuber Previous: E Fermi's Golden Rule

  
F Second Order Co Tunneling Rate at Zero Temperature

  The second order co-tunneling rate can be calculated analytically for zero temperature. Starting from (2.44) for N=2, the co-tunneling rate may be written as
\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\iiii...
...}^4(1-f(\omega_i))
\,d\omega_1\,d\omega_2\,d\omega_3\,d\omega_4.
\end{multline}
At zero temperature the Fermi functions are either zero or one and may therefore be moved in the boundaries of the integrals.
\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\iiii...
...\omega_3+\omega_4)
\,d\omega_1\,d\omega_2\,d\omega_3\,d\omega_4.
\end{multline}
The integration over $\omega_4$ is eliminated by the $\delta $-function. The condition $\omega_4=eV_b-\omega_1-\omega_2-\omega_3$ demanded by the $\delta $-function and the integration regions of $\omega_x>0$ give the inequalities
\begin{gather}\omega_3<eV_b-\omega_1-\omega_2, \qquad \omega_2<eV_b-\omega_1, \qquad
\omega_1<eV_b,
\end{gather}
for the new upper boundaries of integration.
\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\int_...
...+\omega_2}+
\frac{1}{\Delta F_2+eV_b-\omega_1-\omega_2}\right)^2
\end{multline}
Integrating over $\omega_3$ results in
\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\int_...
...a F_2+eV_b-\omega_1-\omega_2}\right)^2
(eV_b-\omega_1-\omega_2).
\end{multline}
Substituting $u=\omega_1+\omega_2$ gives
\begin{gather}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\int_0^...
...ac{1}{\Delta F_1+u}+\frac{1}{\Delta F_2+eV_b-u}\right)^2
(eV_b-u).
\end{gather}
The integrand can be changed to a partial sum
\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\int_...
...(\frac{1}{\Delta F_1+u}+\frac{1}{\Delta F_2+eV_b-u}\right)\Biggr]
\end{multline}

\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\int_...
...{\Delta F_2+eV_b-\omega_1}{\Delta F_2}\right\vert\right)
\Biggr]
\end{multline}

\begin{multline}\Gamma^{(2)}=\frac{\hbar}{2\pi}\frac{1}{e^4 R_{T1}R_{T2}}
\Bigg...
...2\ln\left\vert 1+\frac{eV_b}{\Delta F_2}\right\vert\right)\Biggr]
\end{multline}
And finally collecting the logarithms yields
\begin{gather}\Gamma^{(2)}\arrowvert_{T=0}=\frac{\hbar V_b}{2\pi e^3R_{T1}R_{T2}...
...n
\left\vert 1+\frac{eV_b}{\Delta F_i}\right\vert\right)-2\right].
\end{gather}




Christoph Wasshuber