The stationary phase approximation or saddlepoint method was developed in the 18 century by Pierre-Simon Laplace [252]. The aim is to find an approximation for the integral
for analytic functions with a global minimum at , which implies that
and
holds. Expanding in a Taylor series at the minimum and simplifying the expression using
we get
Using the solution of the Gaussian integral
we can evaluate (A.16) to get the final result
[1] A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn. “Quantum Technology: The Second Quantum Revolution”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361.1809 (2003), pp. 1655–1674. DOI: 10.1098/rsta.2003.1227.
[2] J. E. Lilienfeld. Device for Controlling Electric Current. US1900018A. 1928.
[3] O. Heil. Improvements in or Relating to Electrical Amplifiers and other Control Arrangements and Devices. GB439457. 1935.
[4] C.-T. Sah. “Evolution of the MOS Transistor–From Conception to VLSI”. In: Proceedings of the IEEE 76.10 (1988), pp. 1280–1326. DOI: 10.1109/5.16328.
[5] J. Bardeen and W. H. Brattain. Three-Electrode Circuit Element Utilizing Semiconductive materials. US2524035A. Oct. 1950.
[6] D. Kahng. Electric Field Controlled Semiconductor Device. US3102230. Aug. 1963.
[7] M. M. Atalla. Semiconductor Devices Having Dielectric Coatings. US3206670. Sept. 1965.
[8] B. Deal. “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”. In: IEEE Transactions on Electron Devices 27.3 (1980), pp. 606–608. DOI: 10.1109/T-ED.1980.19908.
[9] F. M. Wanlass and C. T. Sah. “Nanowatt Logic Using Field-Effect Metal-Oxide Semiconductor Triodes”. In: Semiconductor Devices: Pioneering Papers, pp. 637–638. DOI: 10.1142/9789814503464_0081.
[10] F. M. Wanlass. Low Stand-By Power Complementary Field Effect Circuitry. US3356858. Dec. 1967.
[11] G. E. Moore. Cramming More Components onto Integrated Circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.. 2006. DOI: 10.1109/N-SSC.2006.4785860.
[12] International Technology Roadmap for Semiconductors. 2020. URL: http://www.itrs2.net/ (visited on 05/29/2022).
[13] M. M. Waldrop. “The Chips are Down for Moore’s Law”. In: Nature 530 (2016), pp. 144–147. DOI: 10.1038/530144a.
[14] IEEE International Roadmap for Devices and Systems. 2022. URL: https://irds.ieee.org/ (visited on 05/29/2022).
[15] H. L. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. L. Chen, W. S. Khwa, B. Pulicherla, P. J. Liao, K. W. Su, K. F. Yu, T. Wang, H. S. P. Wong, C. H. Diaz, and J. Cai. “Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs”. In: 2020 IEEE Symposium on VLSI Technology. 2020, pp. 1–2. DOI: 10.1109/VLSITechnology18217.2020.9265065.
[16] S. S. T. Nibhanupudi, S. R. Sundara Raman, M. Cassé, L. Hutin, and J. P. Kulkarni. “Ultra-Low-Voltage UTBB-SOI-Based, Pseudo-Static Storage Circuits for Cryogenic CMOS Applications”. In: IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 7.2 (2021), pp. 201–208. DOI: 10.1109/JXCDC.2021.3130839.
[17] R. Saligram, S. Datta, and A. Raychowdhury. “CryoMem: A 4K-300K 1.3GHz eDRAM Macro with Hybrid 2T-Gain-Cell in a 28nm Logic Process for Cryogenic Applications”. In: 2021 IEEE Custom Integrated Circuits Conference (CICC). 2021, pp. 1–2. DOI: 10.1109/CICC51472.2021.9431527.
[18] F. Tavernier, A. Gatti, and C. Barretto. “Chip Design for Future Gravitational Wave Detectors”. In: 2020 IEEE International Electron Devices Meeting (IEDM). 2020, pp. 25.4.1–25.4.4. DOI: 10.1109/IEDM13553.2020.9372071.
[19] Outline of the People’s Republic of China 14th Five-Year Plan for National Economic and Social Development and Long-Range Objectives for 2035. 2021. URL: https://cset.georgetown.edu/wp-content/uploads/t0284_14th_Five_Year_Plan_EN.pdf (visited on 05/29/2022).
[20] Quantum Flagship. 2021. URL: https://qt.eu/ (visited on 05/29/2022).
[21] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. “Quantum Supremacy Using a Programmable Superconducting processor”. In: Nature 574.7779 (2019), pp. 505–510. ISSN: 1476-4687. DOI: 10.1038/s41586-019-1666-5.
[22] M. Steffen, D. P. DiVincenzo, J. M. Chow, T. N. Theis, and M. B. Ketchen. “Quantum Computing: An IBM Perspective”. In: IBM Journal of Research and Development 55.5 (2011), 13:1–13:11. DOI: 10.1147/JRD.2011.2165678.
[23] T. Last, N. Samkharadze, P. Eendebak, R. Versluis, X. Xue, A. Sammak, D. Brousse, K. Loh, H. Polinder, G. Scappucci, M. Veldhorst, L. Vandersypen, K. Maturová, J. Veltin, and G. Alberts. “Quantum Inspire: QuTech’s Platform for Co-Development and Collaboration in Quantum Computing”. In: Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020. Ed. by M. I. Sanchez and E. M. Panning. Vol. 11324. International Society for Optics and Photonics. SPIE, 2020, pp. 49–59. DOI: 10.1117/12.2551853.
[24] J. A. Jones, M. Mosca, and R. H. Hansen. “Implementation of a Quantum Search Algorithm on a Quantum Computer”. In: Nature 393.6683 (May 1998), pp. 344–346. ISSN: 1476-4687. DOI: 10.1038/30687.
[25] I. L. Chuang, N. Gershenfeld, and M. Kubinec. “Experimental Implementation of Fast Quantum Searching”. In: Phys. Rev. Lett. 80 (15 Apr. 1998), pp. 3408–3411. DOI: 10.1103/PhysRevLett.80.3408.
[26] I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd. “Experimental Realization of a Quantum Algorithm”. In: Nature 393.6681 (May 1998), pp. 143–146. ISSN: 1476-4687. DOI: 10.1038/30181.
[27] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang. “Shor’s Quantum Factoring Algorithm Using Nuclear Magnetic Resonance”. In: Nature 414.6866 (Dec. 2001), pp. 883–887. ISSN: 1476-4687. DOI: 10.1038/414883a.
[28] J. Gambetta. IBM’s Roadmap for Scaling Quantum Technology. Sept. 2020. URL: https://research.ibm.com/blog/ibm-quantum-roadmap (visited on 05/29/2022).
[29] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva, and R. S. Smith. “A Quantum-Classical Cloud Platform Optimized for Variational Hybrid Algorithms”. In: Quantum Science and Technology 5.2 (Apr. 2020), p. 024003. DOI: 10.1088/2058-9565/ab7559.
[30] R. Izsak, C. Riplinger, N. S. Blunt, B. de Souza, N. Holzmann, O. Crawford, J. Camps, F. Neese, and P. Schopf. Quantum Computing in Pharma: A Multilayer Embedding Approach for Near Future Applications. 2022. DOI: 10.48550/ARXIV.2202.04460.
[31] J. Hsu. “CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum Supremacy”. In: IEEE Spectrum Tech Talk (2018), pp. 1–6.
[32] Alibaba Cloud and CAS Launch One of the World’s Most Powerful Public Quantum Computing Services. Mar. 2018. URL: https://www.alibabacloud.com/press-room/alibaba-cloud-and-cas-launch-one-of-the-worlds-most?spm=a3c0i.8288105.651515.3.61356dc28LK6Rw (visited on 01/28/2022).
[33] A. K. Fedorov, A. V. Akimov, J. D. Biamonte, A. V. Kavokin, F. Y. Khalili, E. O. Kiktenko, N. N. Kolachevsky, Y. V. Kurochkin, A. I. Lvovsky, A. N. Rubtsov, G. V. Shlyapnikov, S. S. Straupe, A. V. Ustinov, and A. M. Zheltikov. “Quantum Technologies in Russia”. In: Quantum Science and Technology 4.4 (Oct. 2019), p. 040501. DOI: 10.1088/2058-9565/ab4472.
[34] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis. “Digitized Adiabatic Quantum Computing with a Superconducting Circuit”. In: Nature 534.7606 (June 2016), pp. 222–226. ISSN: 1476-4687. DOI: 10.1038/nature17658.
[35] J. Kelly. A Preview of Bristlecone, Google’s New Quantum Processor. Mar. 2018. URL: https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html (visited on 05/29/2022).
[36] Scalable Quantum Systems Built from the Chip up to Power Practical Applications. Nov. 2021. URL: https://www.rigetti.com/what-we-build (visited on 05/29/2022).
[37] Quantum Inspire Spin-2 QPU. URL: https://www.quantum-inspire.com/backends/spin-2/ (visited on 05/29/2022).
[38] Quantum Inspire Starmon-5. URL: https://www.quantum-inspire.com/backends/starmon-5/ (visited on 05/29/2022).
[39] R. Blümel, N. Grzesiak, N. H. Nguyen, A. M. Green, M. Li, A. Maksymov, N. M. Linke, and Y. Nam. “Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer”. In: Phys. Rev. Lett. 126 (22 June 2021), p. 220503. DOI: 10.1103/PhysRevLett.126.220503.
[40] P. Chapman. Scaling IonQ’s Quantum Computers: The Roadmap. Dec. 2022. URL: https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap (visited on 05/29/2022).
[41] Demonstrating Benefits of Quantum Upgradable Design Strategy: System Model H1-2 First to Prove 2,048 Quantum Volume. Dec. 2021. URL: https://www.quantinuum.com/pressrelease/demonstrating-benefits-of-quantum-upgradable-design-strategy-system-model-h1-2-first-to-prove-2-048-quantum-volume (visited on 05/29/2022).
[42] Quantum Milestone: How We Quadrupled Performance. 2021. URL: https://www.honeywell.com/us/en/news/2021/03/quantum-milestone-how-we-quadrupled-performance (visited on 05/29/2022).
[43] M. Sheffer, D. Azses, and E. G. D. Torre. “Playing Quantum Nonlocal Games with Six Noisy Qubits on the Cloud”. In: Advanced Quantum Technologies 5.3 (Jan. 2022), p. 2100081. DOI: 10.1002/qute.202100081.
[44] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. “Quantum Circuits with many Photons on a Programmable Nanophotonic Chip”. In: Nature 591.7848 (Mar. 2021), pp. 54–60. ISSN: 1476-4687. DOI: 10.1038/s41586-021-03202-1.
[45] Xanadu Quantum Cloud. 2022. URL: https://www.xanadu.ai/cloud (visited on 05/29/2022).
[46] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan. “18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom”. In: Phys. Rev. Lett. 120 (June 2018), p. 260502. DOI: 10.1103/PhysRevLett.120.260502.
[47] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan. “Quantum Computational Advantage Using Photons”. In: Science 370.6523 (2020), pp. 1460–1463. DOI: 10.1126/science.abe8770.
[48] R. Harris, J. Johansson, A. J. Berkley, M. W. Johnson, T. Lanting, S. Han, P. Bunyk, E. Ladizinsky, T. Oh, I. Perminov, E. Tolkacheva, S. Uchaikin, E. M. Chapple, C. Enderud, C. Rich, M. Thom, J. Wang, B. Wilson, and G. Rose. “Experimental Demonstration of a Robust and Scalable Flux Qubit”. In: Phys. Rev. B 81 (13 Apr. 2010), p. 134510. DOI: 10.1103/PhysRevB.81.134510.
[49] S. Boixo, T. F. Rønnow, S. Isakov, Z. Wang, D. Wecker, D. Lidar, J. Martinis, and M. Troyer. “Quantum Annealing with More Than One Hundred Qubits”. In: Nat Phys 10 (Apr. 2013). DOI: 10.1038/nphys2900.
[50] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch. Benchmarking a Quantum Annealing Processor with the Time-To-Target Metric. 2015. DOI: 10.48550/ARXIV.1508.05087.
[51] N. Dattani, S. Szalay, and N. Chancellor. Pegasus: The Second Connectivity Graph for Large-Scale Quantum Annealing Hardware. 2019. DOI: 10.48550/ARXIV.1901.07636.
[52] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[53] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”. In: SIAM Review 41.2 (1999), pp. 303–332. DOI: 10.1137/S0036144598347011.
[54] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. “Quantum Machine Learning”. In: Nature 549.7671 (Sept. 2017), pp. 195–202. ISSN: 1476-4687. DOI: 10.1038/nature23474.
[55] A. Montanaro. “Quantum Algorithms: An Overview”. In: npj Quantum Information 2.1 (Jan. 2016), p. 15023. ISSN: 2056-6387. DOI: 10.1038/npjqi.2015.23.
[56] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White. “Towards Quantum Chemistry on a Quantum Computer”. In: Nature Chemistry 2.2 (Feb. 2010), pp. 106–111. ISSN: 1755-4349. DOI: 10.1038/nchem.483.
[57] S. Woerner and D. J. Egger. “Quantum Risk Analysis”. In: npj Quantum Information 5.1 (Feb. 2019), p. 15. ISSN: 2056-6387. DOI: 10.1038/s41534-019-0130-6.
[58] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. On "Quantum Supremacy". Oct. 2019. URL: https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/ (visited on 01/14/2022).
[59] L. K. Grover. “Quantum Mechanics Helps in Searching for a Needle in a Haystack”. In: Phys. Rev. Lett. 79 (2 July 1997), pp. 325–328. DOI: 10.1103/PhysRevLett.79.325.
[60] IBM Research. 2022. URL: https://research.ibm.com/ (visited on 04/14/2022).
[61] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill, D. Leibfried, and D. J. Wineland. “Single-Qubit-Gate Error Below 10−4 in a Trapped Ion”. In: Phys. Rev. A 84 (Sept. 2011), p. 030303. DOI: 10.1103/PhysRevA.84.030303.
[62] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup. “Quantum Error Correction in a Solid-State Hybrid Spin Register”. In: Nature 506.7487 (Feb. 2014), pp. 204–207. ISSN: 1476-4687. DOI: 10.1038/nature12919.
[63] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, J. Biamonte, and J. Wrachtrup. “Spin Entanglement Using Optimal Control”. In: Nature Communications 5.1 (Feb. 2014), p. 3371. ISSN: 2041-1723. DOI: 10.1038/ncomms4371.
[64] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. “Linear Optical Quantum Computing with Photonic Qubits”. In: Rev. Mod. Phys. 79 (Jan. 2007), pp. 135–174. DOI: 10.1103/RevModPhys.79.135.
[65] B. Govoreanu, S. Kubicek, J. Jussot, B. Chan, N. Dumoulin-Stuyck, F. Mohiyaddin, R. Li, G. Simion, T. Ivanov, D. Mocuta, J. Lee, and I. Radu. “Moving Spins From Lab to Fab: A Silicon-Based Platform for Quantum Computing Device Technologies”. In: 2019 Silicon Nanoelectronics Workshop (SNW). 2019, pp. 1–2. DOI: 10.23919/SNW.2019.8782903.
[66] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. “A Two-Qubit Logic Gate in Silicon”. In: Nature 526.7573 (Oct. 2015), pp. 410–414. ISSN: 1476-4687. DOI: 10.1038/nature15263.
[67] I. P. Radu, R. Li, A. Potočnik, T. Ivanov, D. Wan, S. Kubicek, N. I. Dumoulin Stuyck, J. Verjauw, J. Jussot, Y. Canvel, C. Godfrin, M. Mongillo, R. Acharya, A. Elsayed, M. Shehata, X. Piao, A. Pacco, L. Souriau, S. Couet, B. T. Chan, J. Craninckx, B. Parvais, A. Grill, S. Narasimhamoorthy, S. Van Winckel, S. Brebels, F. A. Mohiyaddin, G. Simion, and B. Govoreanu. “Solid State Qubits: How Learning from CMOS Fabrication can Speed-Up Progress in Quantum Computing”. In: 2021 Symposium on VLSI Technology. 2021, pp. 1–2. DOI: 10.23919/VLSICircuits52068.2021.9492397.
[68] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver. “Superconducting Qubits: Current State of Play”. In: Annual Review of Condensed Matter Physics 11.1 (2020), pp. 369–395. DOI: 10.1146/annurev-conmatphys-031119-050605.
[69] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. “A Quantum Engineer’s Guide to Superconducting Qubits”. In: Applied Physics Reviews 6.2 (2019), p. 021318. DOI: 10.1063/1.5089550.
[70] M. H. Devoret, A. Wallraff, and J. M. Martinis. Superconducting Qubits: A Short Review. 2004. DOI: 10.48550/ARXIV.COND-MAT/0411174.
[71] D. Stancil and G. Byrd. Principles of Superconducting Quantum Computers. Wiley, 2022. ISBN: 9781119750741.
[72] J. Verjauw, R. Acharya, J. Van Damme, T. Ivanov, D. P. Lozano, F. A. Mohiyaddin, D. Wan, J. Jussot, A. M. Vadiraj, M. Mongillo, M. Heyns, I. Radu, B. Govoreanu, and A. Potočnik. “Path Toward Manufacturable Superconducting Qubits With Relaxation Times Exceeding 0.1 ms”. In: (2022). DOI: 10.48550/ARXIV.2202.10303.
[73] F. A. Mohiyaddin, G. Simion, N. I. D. Stuyck, R. Li, F. Ciubotaru, G. Eneman, F. M. Bufler, S. Kubicek, J. Jussot, B. Chan, T. Ivanov, A. Spessot, P. Matagne, J. Lee, B. Govoreanu, and I. P. Raduimec. “Multiphysics Simulation AMP; Design of Silicon Quantum Dot Qubit Devices”. In: 2019 IEEE International Electron Devices Meeting (IEDM). 2019, pp. 39.5.1–39.5.4. DOI: 10.1109/IEDM19573.2019.8993541.
[74] F. N. M. Froning, L. C. Camenzind, O. A. H. van der Molen, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl, and F. R. Braakman. “Ultrafast Hole Spin Qubit With Gate-Tunable Spin–Orbit Switch Functionality”. In: Nature Nanotechnology 16.3 (Mar. 2021), pp. 308–312. ISSN: 1748-3395. DOI: 10.1038/s41565-020-00828-6.
[75] K. Ono, T. Mori, and S. Moriyama. “High-Temperature Operation of a Silicon Qubit”. In: Scientific Reports 9.1 (Jan. 2019), p. 469. ISSN: 2045-2322. DOI: 10.1038/s41598-018-36476-z.
[76] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi. “A CMOS Silicon Spin Qubit”. In: Nature Communications 7.1 (Nov. 2016), p. 13575. ISSN: 2041-1723. DOI: 10.1038/ncomms13575.
[77] R. Li, N. I. D. Stuyck, S. Kubicek, J. Jussot, B. T. Chan, F. A. Mohiyaddin, A. Elsayed, M. Shehata, G. Simion, C. Godfrin, Y. Canvel, T. Ivanov, L. Goux, B. Govoreanu, and I. P. Radu. “A Flexible 300 mm Integrated Si MOS Platform for Electron- and Hole-Spin Qubits Exploration”. In: 2020 IEEE International Electron Devices Meeting (IEDM). 2020, pp. 38.3.1–38.3.4. DOI: 10.1109/IEDM13553.2020.9371956.
[78] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha. “A Quantum-Dot Spin Qubit with Coherence Limited by Charge Noise and Fidelity Higher Than 99.9%”. In: Nature Nanotechnology 13.2 (Feb. 2018), pp. 102–106. ISSN: 1748-3395. DOI: 10.1038/s41565-017-0014-x.
[79] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven. “Single-Shot Read-Out of an Individual Electron Spin in a Quantum Dot”. In: Nature 430.6998 (2004), pp. 431–435. ISSN: 1476-4687. DOI: 10.1038/nature02693.
[80] N. I. D. Stuyck, R. Li, C. Godfrin, A. Elsayed, S. Kubicek, J. Jussot, B. T. Chan, F. A. Mohiyaddin, M. Shehata, G. Simion, Y. Canvel, L. Goux, M. Heyns, B. Govoreanu, and I. P. Radu. “Uniform Spin Qubit Devices with Tunable Coupling in an All-Silicon 300 mm Integrated Process”. In: 2021 Symposium on VLSI Circuits. 2021, pp. 1–2. DOI: 10.23919/VLSICircuits52068.2021.9492427.
[81] J. C. Bardin, E. Jeffrey, E. Lucero, T. Huang, S. Das, D. T. Sank, O. Naaman, A. E. Megrant, R. Barends, T. White, M. Giustina, K. J. Satzinger, K. Arya, P. Roushan, B. Chiaro, J. Kelly, Z. Chen, B. Burkett, Y. Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, R. Graff, P. Klimov, J. Mutus, M. J. McEwen, M. Neeley, C. J. Neill, C. Quintana, A. Vainsencher, H. Neven, and J. Martinis. “Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K”. In: IEEE Journal of Solid-State Circuits 54.11 (2019), pp. 3043–3060. DOI: 10.1109/JSSC.2019.2937234.
[82] A. Ruffino, T.-Y. Yang, J. Michniewicz, Y. Peng, E. Charbon, and M. F. Gonzalez-Zalba. “A Cryo-CMOS Chip that Integrates Silicon Quantum Dots and multiplexed dispersive readout electronics”. In: Nature Electronics 5.1 (Jan. 2022), pp. 53–59. ISSN: 2520-1131. DOI: 10.1038/s41928-021-00687-6.
[83] L. L. Guevel, G. Billiot, X. Jehl, S. De Franceschi, M. Zurita, Y. Thonnart, M. Vinet, M. Sanquer, R. Maurand, A. G. M. Jansen, and G. Pillonnet. “19.2 A 110mK 295µW 28nm FDSOI CMOS Quantum Integrated Circuit with a 2.8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot”. In: 2020 IEEE International Solid- State Circuits Conference - (ISSCC). 2020, pp. 306–308. DOI: 10.1109/ISSCC19947.2020.9063090.
[84] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis. “Superconducting Quantum Circuits at the Surface Code Threshold for Fault Tolerance”. In: Nature 508.7497 (2014), pp. 500–503. ISSN: 1476-4687. DOI: 10.1038/nature13171.
[85] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt. “Towards Fault-Tolerant Quantum Computing with Trapped Ions”. In: Nature Physics 4.6 (2008), pp. 463–466. ISSN: 1745-2481. DOI: 10.1038/nphys961.
[86] J. van Dijk, E. Kawakami, R. Schouten, M. Veldhorst, L. Vandersypen, M. Babaie, E. Charbon, and F. Sebastiano. “Impact of Classical Control Electronics on Qubit Fidelity”. In: Phys. Rev. Applied 12 (4 Oct. 2019), p. 044054. DOI: 10.1103/PhysRevApplied.12.044054.
[87] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. “Surface Codes: Towards Practical Large-Scale Quantum Computation”. In: Phys. Rev. A 86 (2012), p. 032324. DOI: 10.1103/PhysRevA.86.032324.
[88] H. Homulle, F. Sebastiano, and E. Charbon. “Deep-Cryogenic Voltage References in 40-nm CMOS”. In: IEEE Solid-State Circuits Letters 1.5 (2018), pp. 110–113. DOI: 10.1109/LSSC.2018.2875821.
[89] J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly. “Cryogenic Control Architecture for Large-Scale Quantum Computing”. In: Phys. Rev. Applied 3 (2 Feb. 2015), p. 024010. DOI: 10.1103/PhysRevApplied.3.024010.
[90] E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, and R. M. Incandela. “Cryo-CMOS for Quantum Computing”. In: 2016 IEEE International Electron Devices Meeting (IEDM). 2016, pp. 13.5.1–13.5.4. DOI: 10.1109/IEDM.2016.7838410.
[91] S. R. Ekanayake, T. Lehmann, A. S. Dzurak, R. G. Clark, and A. Brawley. “Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout”. In: IEEE Transactions on Electron Devices 57.2 (2010), pp. 539–547. DOI: 10.1109/TED.2009.2037381.
[92] X. Xue, B. Patra, J. P. G. van Dijk, N. Samkharadze, S. Subramanian, A. Corna, B. Paquelet Wuetz, C. Jeon, F. Sheikh, E. Juarez-Hernandez, B. P. Esparza, H. Rampurawala, B. Carlton, S. Ravikumar, C. Nieva, S. Kim, H.-J. Lee, A. Sammak, G. Scappucci, M. Veldhorst, F. Sebastiano, M. Babaie, S. Pellerano, E. Charbon, and L. M. K. Vandersypen. “CMOS-Based Cryogenic Control of Silicon Quantum Circuits”. In: Nature 593.7858 (May 2021), pp. 205–210. ISSN: 1476-4687. DOI: 10.1038/s41586-021-03469-4.
[93] G. Batey, Á. J. Matthews, and M. Patton. “A New Ultra-Low-Temperature Cryogen-Free Experimental Platform”. In: Journal of Physics: Conference Series 568.3 (2014), p. 032014. DOI: 10.1088/1742-6596/568/3/032014.
[94] M. A. Castellanos-Beltran and K. W. Lehnert. “Widely Tunable Parametric Amplifier Based on a Superconducting Quantum Interference Device Array Resonator”. In: Applied Physics Letters 91.8 (2007), p. 083509. DOI: 10.1063/1.2773988.
[95] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret. “Phase-Preserving Amplification Near the Quantum Limit with a Josephson Ring Modulator”. In: Nature 465.7294 (2010), pp. 64–68. ISSN: 1476-4687. DOI: 10.1038/nature09035.
[96] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi. “Dispersive Magnetometry with a Quantum Limited SQUID Parametric Amplifier”. In: Phys. Rev. B 83 (13 Apr. 2011), p. 134501. DOI: 10.1103/PhysRevB.83.134501.
[97] K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. “Improving the Quality Factor of Microwave Compact Resonators by Optimizing Their Geometrical Parameters”. In: Applied Physics Letters 100.19 (2012), p. 192601. DOI: 10.1063/1.4710520.
[98] J. M. Hornibrook, E. E. Mitchell, and D. J. Reilly. “Suppressing Dissipative Paths in Superconducting Coplanar Waveguide Resonators”. In: IEEE Transactions on Applied Superconductivity 23.3 (2013), pp. 1501604–1501604. DOI: 10.1109/TASC.2013.2251055.
[99] G. Viola and D. P. DiVincenzo. “Hall Effect Gyrators and Circulators”. In: Phys. Rev. X 4 (May 2014), p. 021019. DOI: 10.1103/PhysRevX.4.021019.
[100] A. Potočnik, S. Brebels, J. Verjauw, R. Acharya, A. Grill, D. Wan, M. Mongillo, R. Li, T. Ivanov, S. V. Winckel, F. A. Mohiyaddin, B. Govoreanu, J. Craninckx, and I. P. Radu. “Millikelvin Temperature Cryo-CMOS Multiplexer for Scalable Quantum Device Characterisation”. In: Quantum Science and Technology 7.1 (Oct. 2021), p. 015004. DOI: 10.1088/2058-9565/ac29a1.
[101] D. H. Slichter, O. Naaman, and I. Siddiqi. “Millikelvin Thermal and Electrical Performance of Lossy Transmission Line Filters”. In: Applied Physics Letters 94.19 (2009), p. 192508. DOI: 10.1063/1.3133362.
[102] J. Wenner, M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, A. D. OĆonnell, D. Sank, H. Wang, M. Weides, A. N. Cleland, and J. M. Martinis. “Wirebond Crosstalk and Cavity Modes in Large Chip Mounts for Superconducting Qubits”. In: Superconductor Science and Technology 24.6 (Mar. 2011), p. 065001. DOI: 10.1088/0953-2048/24/6/065001.
[103] M. Rahman and T. Lehmann. “A Cryogenic DAC Operating Down to 4.2K”. In: Cryogenics 75 (2016), pp. 47–55. ISSN: 0011-2275. DOI: https://doi.org/10.1016/j.cryogenics.2016.02.003.
[104] M. E. P. V. Zurita, L. Le Guevel, G. Billiot, A. Morel, X. Jehl, A. G. M. Jansen, and G. Pillonnet. “Cryogenic Current Steering DAC With Mitigated Variability”. In: IEEE Solid-State Circuits Letters 3 (2020), pp. 254–257. DOI: 10.1109/LSSC.2020.3013443.
[105] P. Vliex, C. Degenhardt, C. Grewing, A. Kruth, D. Nielinger, S. van Waasen, and S. Heinen. “Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications”. In: IEEE Solid-State Circuits Letters 3 (2020), pp. 218–221. DOI: 10.1109/LSSC.2020.3011576.
[106] B. Patra, J. P. G. van Dijk, S. Subramanian, A. Corna, X. Xue, C. Jeon, F. Sheikh, E. Juarez-Hernandez, B. P. Esparza, H. Rampurawala, B. Carlton, N. Samkharadze, S. Ravikumar, C. Nieva, S. Kim, H.-J. Lee, A. Sammak, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen, M. Babaie, F. Sebastiano, E. Charbon, and S. Pellerano. “19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers”. In: 2020 IEEE International Solid- State Circuits Conference - (ISSCC). 2020, pp. 304–306. DOI: 10.1109/ISSCC19947.2020.9063109.
[107] R. Saligram, W. Chakraborty, N. Cao, Y. Cao, S. Datta, and A. Raychowdhury. “Power Performance Analysis of Digital Standard Cells for 28 nm Bulk CMOS at Cryogenic Temperature Using BSIM Models”. In: IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 7.2 (2021), pp. 193–200. DOI: 10.1109/JXCDC.2021.3131100.
[108] R. Wang, S. Guo, Z. Zhang, Q. Wang, D. Wu, J. Wang, and R. Huang. “Too Noisy at the Bottom? —Random Telegraph Noise (RTN) in Advanced Logic Devices and Circuits”. In: 2018 IEEE International Electron Devices Meeting (IEDM). 2018, pp. 17.2.1–17.2.4. DOI: 10.1109/IEDM.2018.8614594.
[109] A. Beckers, F. Jazaeri, and C. Enz. “Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K”. In: IEEE Journal of the Electron Devices Society 6 (2018), pp. 1007–1018. DOI: 10.1109/JEDS.2018.2817458.
[110] A. Beckers, F. Jazaeri, and C. Enz. “Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors”. In: IEEE Electron Device Letters 41.2 (2020), pp. 276–279. DOI: 10.1109/LED.2019.2963379.
[111] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz. “Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs”. In: IEEE Journal of the Electron Devices Society 8 (2020), pp. 780–788. DOI: 10.1109/JEDS.2020.2989629.
[112] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz. “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing”. In: 2017 47th European Solid-State Device Research Conference (ESSDERC). 2017, pp. 62–65. DOI: 10.1109/ESSDERC.2017.8066592.
[113] T. Grasser, ed. Bias Temperature Instability for Devices and Circuits. Springer Science+Business Media New York, 2013. ISBN: 978-1-4614-7908-6. DOI: 10.1007/978-1-4614-7909-3.
[114] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, M. Toledano-Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps”. In: IEEE Transactions on Electron Devices 58.11 (2011), pp. 3652–3666.
[115] J. H. Stathis, S. Mahapatra, and T. Grasser. “Controversial Issues in Negative Bias Temperature Instability”. In: Microelectronics Reliability 81 (Dec. 2018), pp. 244–251. DOI: 10.1016/j.microrel.2017.12.035.
[116] T. Grasser, ed. Noise in Nanoscale Semiconductor Devices. Springer Science + Business Media New York, 2020. ISBN: 978-3-030-37499-0. DOI: 10.1007/978-3-030-37500-3.
[117] M. Kirton and M. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/ f ) Noise”. In: Advances in Physics 38.4 (1989), pp. 367–468. DOI: 10.1080/00018738900101122.
[118] M. J. Uren, M. J. Kirton, and S. Collins. “Anomalous Telegraph Noise in Small-Area Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Phys. Rev. B 37 (14 May 1988), pp. 8346–8350. DOI: 10.1103/PhysRevB.37.8346.
[119] S. Tyaginov and T. Grasser. “Modeling of Hot-Carrier Degradation: Physics and Controversial Issues”. In: 2012 IEEE International Integrated Reliability Workshop Final Report. 2012, pp. 206–215. DOI: 10.1109/IIRW.2012.6468962.
[120] T. Grasser, ed. Hot Carrier Degradation in Semiconductor Devices. Springer International Publishing, 2014. ISBN: 978-3-319-08993-5. DOI: 10.1007/978-3-319-08994-2.
[121] R. Huang, X. B. Jiang, S. F. Guo, P. P. Ren, P. Hao, Z. Q. Yu, Z. Zhang, Y. Y. Wang, and R. S. Wang. “Variability-and Reliability-Aware Design for 16/14 nm and Beyond Technology”. In: 2017 IEEE International Electron Devices Meeting (IEDM). 2017, pp. 12.4.1–12.4.4. DOI: 10.1109/IEDM.2017.8268378.
[122] G. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, and D. D. Awschalom. “Quantum Guidelines for Solid-State Spin Defects”. In: Nature Reviews Materials 6.10 (Oct. 2021), pp. 906–925. ISSN: 2058-8437. DOI: 10.1038/s41578-021-00306-y.
[123] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina. “Decoherence of a Superconducting Qubit Due to Bias Noise”. In: Phys. Rev. B 67 (9 Mar. 2003), p. 094510. DOI: 10.1103/PhysRevB.67.094510.
[124] D. J. Van Harlingen, T. L. Robertson, B. L. T. Plourde, P. A. Reichardt, T. A. Crane, and J. Clarke. “Decoherence in Josephson-Junction Qubits Due to Critical-Current Fluctuations”. In: Phys. Rev. B 70 (6 Aug. 2004), p. 064517. DOI: 10.1103/PhysRevB.70.064517.
[125] R. McDermott. “Materials Origins of Decoherence in Superconducting Qubits”. In: IEEE Transactions on Applied Superconductivity 19.1 (2009), pp. 2–13. DOI: 10.1109/TASC.2008.2012255.
[126] D. Culcer, X. Hu, and S. Das Sarma. “Dephasing of Si Spin Qubits Due to Charge Noise”. In: Applied Physics Letters 95.7 (2009), p. 073102. DOI: 10.1063/1.3194778.
[127] Y.-C. Yang, S. N. Coppersmith, and M. Friesen. “High-Fidelity Single-Qubit Gates in a Strongly Driven Quantum-Dot Hybrid Qubit with 1/ f Charge Noise”. In: Phys. Rev. A 100 (2 Aug. 2019), p. 022337. DOI: 10.1103/PhysRevA.100.022337.
[128] E. J. Connors, J. Nelson, H. Qiao, L. F. Edge, and J. M. Nichol. “Low-Frequency Charge Noise in Si/SiGe Quantum Dots”. In: Phys. Rev. B 100 (Oct. 2019), p. 165305. DOI: 10.1103/PhysRevB.100.165305.
[129] L. Petit, J. M. Boter, H. G. J. Eenink, G. Droulers, M. L. V. Tagliaferri, R. Li, D. P. Franke, K. J. Singh, J. S. Clarke, R. N. Schouten, V. V. Dobrovitski, L. M. K. Vandersypen, and M. Veldhorst. “Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits”. In: Phys. Rev. Lett. 121 (7 Aug. 2018), p. 076801. DOI: 10.1103/PhysRevLett.121.076801.
[130] P. Huang, N. M. Zimmerman, and G. W. Bryant. “Spin Decoherence in a Two-Qubit CPHASE Gate: the Critical Role of Tunneling Noise”. In: npj Quantum Information 4.1 (Nov. 2018), p. 62. ISSN: 2056-6387. DOI: 10.1038/s41534-018-0112-0.
[131] C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S. D. Bartlett, and A. S. Dzurak. “Silicon Qubit Fidelities Approaching Incoherent Noise Limits via Pulse Engineering”. In: Nature Electronics 2.4 (Apr. 2019), pp. 151–158. ISSN: 2520-1131. DOI: 10.1038/s41928-019-0234-1.
[132] N. E. Penthorn, J. S. Schoenfield, J. D. Rooney, and H. W. Jiang. “Reduction of Charge Impurities in a Silicon Metal-Oxide-Semiconductor Quantum Dot Qubit Device Patterned with Nano-Imprint Lithography”. In: Nanotechnology 30.46 (Sept. 2019), p. 465302. DOI: 10.1088/1361-6528/ab3cb9.
[133] K. Ghosh, H. Ma, M. Onizhuk, V. Gavini, and G. Galli. “Spin–Spin Interactions in Defects in Solids from Mixed All-Electron and Pseudopotential First-Principles Calculations”. In: npj Computational Materials 7.1 (July 2021), p. 123. ISSN: 2057-3960. DOI: 10.1038/s41524-021-00590-w.
[134] J. Xu, A. Habib, S. Kumar, F. Wu, R. Sundararaman, and Y. Ping. “Spin-Phonon Relaxation from a Universal Ab Initio Density-Matrix Approach”. In: Nature Communications 11.1 (June 2020), p. 2780. ISSN: 2041-1723. DOI: 10.1038/s41467-020-16063-5.
[135] J. Xu, A. Habib, R. Sundararaman, and Y. Ping. “Ab Initio Ultrafast Spin Dynamics in Solids”. In: Phys. Rev. B 104 (Nov. 2021), p. 184418. DOI: 10.1103/PhysRevB.104.184418.
[136] G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P. Roussel, D. Linten, B. Kaczer, and T. Grasser. “Comphy — A Compact-Physics Framework for Unified Modeling of BTI”. In: Microelectronics Reliability 85 (2018), pp. 49–65. ISSN: 0026-2714. DOI: https://doi.org/10.1016/j.microrel.2018.04.002.
[137] M. L. Reed and J. D. Plummer. “Chemistry of Si-SiO2 Interface Trap Annealing”. In: Journal of Applied Physics 63.12 (1988), pp. 5776–5793. DOI: 10.1063/1.340317.
[138] Y. Nishi. “Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I”. In: Japanese Journal of Applied Physics 10.1 (Jan. 1971), pp. 52–62. DOI: 10.1143/jjap.10.52.
[139] N. H. Thoan, K. Keunen, V. V. Afanas’ev, and A. Stesmans. “Interface State Energy Distribution and Pb Defects at Si(110)/SiO2 Interfaces: Comparison to (111) and (100) Silicon Orientations”. In: Journal of Applied Physics 109.1 (2011), p. 013710. DOI: 10.1063/1.3527909.
[140] B. Stampfer. “Advanced Electrical Characterization of Charge Trapping in MOS Transistors”. PhD thesis. Institut für Mikroelektronik, 2020. DOI: 10.34726/hss.2020.86423.
[141] J. P. Campbell and P. M. Lenahan. “Density of States of Pb1 Si/SiO2 Interface Trap Centers”. In: Applied Physics Letters 80.11 (2002), pp. 1945–1947. DOI: 10.1063/1.1461053.
[142] B. Ruch, M. Jech, G. Pobegen, and T. Grasser. “Applicability of Shockley-Read-Hall Theory for Interface States”. In: 2020 IEEE International Electron Devices Meeting (IEDM). 2020, pp. 22.1.1–22.1.4. DOI: 10.1109/IEDM13553.2020.9372032.
0 [143] K. L. Yip and W. B. Fowler. “Electronic Structure of E1 Centers in SiO2 ”. In: Phys. Rev. B 11 (6 Mar. 1975), pp. 2327–2338. DOI: 10.1103/PhysRevB.11.2327.
[144] E. P. O’Reilly and J. Robertson. “Theory of Defects in Vitreous Silicon Dioxide”. In: Phys. Rev. B 27 (6 Mar. 1983), pp. 3780–3795. DOI: 10.1103/PhysRevB.27.3780.
0 [145] J. K. Rudra, W. B. Fowler, and F. J. Feigl. “Model for the E2 Center in Alpha Quartz”. In: Phys. Rev. Lett. 55 (23 Dec. 1985), pp. 2614–2617. DOI: 10.1103/PhysRevLett.55.2614.
[146] S. Mukhopadhyay, P. V. Sushko, A. M. Stoneham, and A. L. Shluger. “Modeling of the Structure and Properties of Oxygen Vacancies in Amorphous Silica”. In: Phys. Rev. B 70 (19 Nov. 2004), p. 195203. DOI: 10.1103/PhysRevB.70.195203.
[147] F. Schanovsky, O. Baumgartner, W. Goes, and T. Grasser. “A Detailed Evaluation of Model Defects as Candidates for the Bias Temperature Instability”. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2013, pp. 1–4. DOI: 10.1109/SISPAD.2013.6650559.
[148] T. Grasser, W. Goes, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V. Afanas’ev, A. Stesmans, A.-M. El-Sayed, and A. Shluger. “On the Microscopic Structure of Hole Traps in pMOSFETs”. In: 2014 IEEE International Electron Devices Meeting. 2014, pp. 21.1.1–21.1.4. DOI: 10.1109/IEDM.2014.7047093.
[149] Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, and A. L. Shluger. “Role of Hydrogen in Volatile Behaviour of Defects in SiO2 -Based Electronic Devices”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472.2190 (2016), p. 20160009. DOI: 10.1098/rspa.2016.0009.
[150] A. T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, and S. Krishnan. “Negative Bias Temperature Instability Mechanism: The Role of Molecular Hydrogen”. In: Applied Physics Letters 88.15 (2006), p. 153518. DOI: 10.1063/1.2191828.
[151] T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, and H. Hutter. “Impact of Hydrogen on Recoverable and Permanent Damage Following Negative Bias Temperature Stress”. In: 2010 IEEE International Reliability Physics Symposium. 2010, pp. 1063–1068. DOI: 10.1109/IRPS.2010.5488672.
[152] K. Kajihara, L. Skuja, M. Hirano, and H. Hosono. “Diffusion and Reactions of Hydrogen in F2 -Laser-Irradiated SiO2 Glass”. In: Phys. Rev. Lett. 89 (13 Sept. 2002), p. 135507. DOI: 10.1103/PhysRevLett.89.135507.
[153] J. Godet and A. Pasquarello. “Proton Diffusion Mechanism in Amorphous SiO2 ”. In: Phys. Rev. Lett. 97 (15 Oct. 2006), p. 155901. DOI: 10.1103/PhysRevLett.97.155901.
[154] N. S. Saks and A. K. Agarwal. “Hall Mobility and Free Electron Density at the SiC/SiO2 Interface in 4H-SiC”. In: Applied Physics Letters 77.20 (2000), pp. 3281–3283. DOI: 10.1063/1.1326046.
[155] V. V. Afanas0 ev and A. Stesmans. “Interfacial Defects in SiO2 Revealed by Photon Stimulated Tunneling of Electrons”. In: Phys. Rev. Lett. 78 (1997), pp. 2437–2440. DOI: 10.1103/PhysRevLett.78.2437.
[156] A.-M. El-Sayed, M. B. Watkins, V. V. Afanas0 ev, and A. L. Shluger. “Nature of Intrinsic and Extrinsic Electron Trapping in SiO2 ”. In: Phys. Rev. B 89 (2014), p. 125201. DOI: 10.1103/PhysRevB.89.125201.
[157] J. P. Campbell and P. M. Lenahan. “Atomic-Scale Defects Associated with the Negative Bias Temperature Instability”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer New York, 2014, pp. 177–228. ISBN: 978-1-4614-7909-3. DOI: 10.1007/978-1-4614-7909-3_8.
[158] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan. “Identification of Atomic-Scale Defect Structure Involved in the Negative Bias Temperature Instability in Plasma-Nitrided Devices”. In: Applied Physics Letters 91.13 (2007), p. 133507. DOI: 10.1063/1.2790776.
[159] J. P. Campbell, P. M. Lenahan, C. J. Cochrane, A. T. Krishnan, and S. Krishnan. “Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 7.4 (2007), pp. 540–557. DOI: 10.1109/TDMR.2007.911379.
[160] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan. “Identification of the Atomic-Scale Defects Involved in the Negative Bias Temperature Instability in Plasma-Nitrided p-Channel Metal-Oxide-Silicon Field-Effect Transistors”. In: Journal of Applied Physics 103.4 (2008), p. 044505. DOI: 10.1063/1.2844348.
[161] P. M. Lenahan and S. E. Curry. “First Observation of the 29 Si Hyperfine Spectra of Silicon Dangling Bond Centers in Silicon Nitride”. In: Applied Physics Letters 56.2 (1990), pp. 157–159. DOI: 10.1063/1.103278.
[162] W. L. Warren and P. M. Lenahan. “Electron-Nuclear Double-Resonance and Electron-Spin-Resonance Study of Silicon Dangling-Bond Centers in Silicon Nitride”. In: Phys. Rev. B 42 (3 July 1990), pp. 1773–1780. DOI: 10.1103/PhysRevB.42.1773.
[163] D. Griscom, E. Friebele, and G. Sigel. “Observation and Analysis of the Primary 29 Si Hyperfine Structure of the E0 Center in Non-Crystalline SiO2 ”. In: Solid State Communications 15.3 (1974), pp. 479–483. ISSN: 0038-1098. DOI: https://doi.org/10.1016/0038-1098(74)91124-7.
[164] D. Waldhör, A.-M. El-Sayed, Y. Wimmer, M. Waltl, and T. Grasser. “Atomistic Modeling of Oxide Defects”. In: Noise in Nanoscale Semiconductor Devices. Ed. by T. Grasser. Springer International Publishing, 2020, pp. 609–648. ISBN: 978-3-030-37499-0. DOI: 10.1007/978-3-030-37500-3{\_}18.
[165] J. Strand, M. Kaviani, D. Gao, A.-M. El-Sayed, V. V. Afanasév, and A. L. Shluger. “Intrinsic Charge Trapping in Amorphous Oxide Films: Status and Challenges”. In: Journal of Physics: Condensed Matter 30.23 (May 2018), p. 233001. DOI: 10.1088/1361-648x/aac005.
[166] F. Bohra, B. Jiang, and J.-M. Zuo. “Textured Crystallization of Ultrathin Hafnium Oxide Films on Silicon Substrate”. In: Applied physics letters 90.16 (2007), p. 161917.
[167] M. Kaviani, J. Strand, V. V. Afanas’ev, and A. L. Shluger. “Deep Electron and Hole Polarons and Bipolarons in Amorphous Oxide”. In: Phys. Rev. B 94 (2 July 2016), p. 020103. DOI: 10.1103/PhysRevB.94.020103.
[168] F. Cerbu, O. Madia, D. V. Andreev, S. Fadida, M. Eizenberg, L. Breuil, J. G. Lisoni, J. A. Kittl, J. Strand, A. L. Shluger, V. V. Afanas’ev, M. Houssa, and A. Stesmans. “Intrinsic Electron Traps in Atomic-Layer Deposited HfO2 Insulators”. In: Applied Physics Letters 108.22 (2016), p. 222901. DOI: 10.1063/1.4952718.
[169] A. Kerber and E. A. Cartier. “Reliability Challenges for CMOS Technology Qualifications With Hafnium Oxide/Titanium Nitride Gate Stacks”. In: IEEE Transactions on Device and Materials Reliability 9.2 (2009), pp. 147–162. DOI: 10.1109/TDMR.2009.2016954.
[170] B. Govoreanu, R. Degraeve, M. Zahid, L. Nyns, M. Cho, B. Kaczer, M. Jurczak, J. Kittl, and J. Van Houdt. “Understanding the Potential and Limitations of HfAlO as Interpoly Dielectric in Floating-Gate Flash Memory”. In: Microelectronic Engineering 86.7 (2009). INFOS 2009, pp. 1807–1811. ISSN: 0167-9317. DOI: https://doi.org/10.1016/j.mee.2009.03.099.
[171] R. N. Hall. “Electron-Hole Recombination in Germanium”. In: Phys. Rev. 87 (2 July 1952), pp. 387–387. DOI: 10.1103/PhysRev.87.387.
[172] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Phys. Rev. 87 (5 Sept. 1952), pp. 835–842. DOI: 10.1103/PhysRev.87.835.
[173] A. L. McWhorter et al. “1/f Noise and Related Surface Effects in Germanium.” In: (1955).
[174] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52.1 (2012), pp. 39–70. DOI: 10.1016/j.microrel.2011.09.002.
[175] J. Franck and E. G. Dymond. “Elementary Processes of Photochemical Reactions”. In: Trans. Faraday Soc. 21 (February 1926), pp. 536–542. DOI: 10.1039/TF9262100536.
[176] E. Condon. “A Theory of Intensity Distribution in Band Systems”. In: Phys. Rev. 28 (6 Dec. 1926), pp. 1182–1201. DOI: 10.1103/PhysRev.28.1182.
[177] M. Lax. “The Franck-Condon Principle and Its Application to Crystals”. In: The Journal of Chemical Physics 20.11 (1952), pp. 1752–1760. DOI: 10.1063/1.1700283.
[178] W. Nolting. Grundkurs: Theoretische Physik: Quantenmechanik. Springer, 1997.
[179] R. H. Fowler and L. Nordheim. “Electron Emission in Intense Electric Fields”. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119.781 (1928), pp. 173–181. DOI: 10.1098/rspa.1928.0091.
[180] G. Rzepa. “Efficient Physical Modeling of Bias Temperature Instability”. PhD thesis. Institut für Mikroelektronik, 2018. DOI: 10.34726/hss.2018.57326.
[181] A. Alkauskas, Q. Yan, and C. G. Van de Walle. “First-Principles Theory of Nonradiative Carrier Capture via Multiphonon Emission”. In: Phys. Rev. B 90 (7 Aug. 2014), p. 075202. DOI: 10.1103/PhysRevB.90.075202.
[182] M. E. Turiansky, A. Alkauskas, M. Engel, G. Kresse, D. Wickramaratne, J.-X. Shen, C. E. Dreyer, and C. G. Van de Walle. “Nonrad: Computing Nonradiative Capture Coefficients from First Principles”. In: Computer Physics Communications 267 (2021), p. 108056. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2021.108056.
[183] R. Gross, A. Marx, D. Einzel, and S. Geprägs. Festkörperphysik: Aufgaben und Lösungen. De Gruyter, 2018. ISBN: 9783110566130. DOI: doi:10.1515/9783110566130.
[184] P. P. Schmidt. “Computationally Efficient Recurrence Relations for One- Dimensional Franck–Condon Overlap Integrals”. In: Molecular Physics 108.11 (2010), pp. 1513–1529. DOI: 10.1080/00268971003762142.
[185] W. Gös, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. L. Shluger, and T. Grasser. “Identification of Oxide Defects in Semiconductor Devices: A Systematic Approach Linking DFT to Rate Equations and Experimental Evidence”. In: Microelectronics Reliability 87 (2018), pp. 286–320. DOI: 10.1016/j.microrel.2017.12.021.
[186] K. Huang and A. Rhys. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Selected Papers of Kun Huang, pp. 74–92. DOI: 10.1142/9789812793720_0007.
[187] T. Holstein. “Quantal Occurrence-Probability Treatment of Small-Polaron Hopping”. In: Philosophical Magazine B 37.1 (1978), pp. 49–62. DOI: 10.1080/13642817808245306.
[188] T. Markvart. “Determination of Potential Surfaces From Multiphonon Transition Rates”. In: Journal of Physics C: Solid State Physics 14.15 (May 1981), pp. L435–L440. DOI: 10.1088/0022-3719/14/15/002.
[189] T. Markvart. “Semiclassical Theory of Non-Radiative Transitions”. In: Journal of Physics C: Solid State Physics 14.29 (Oct. 1981), pp. L895–L899. DOI: 10.1088/0022-3719/14/29/006.
[190] T. Markvart. “Multiphonon Transitions Between Adiabatic Potential Curves”. In: Journal of Physics C: Solid State Physics 17.35 (1984), pp. 6303–6316. ISSN: 00223719. DOI: 10.1088/0022-3719/17/35/006.
[191] J. Mathews, R. Walker, and W. L. Mathematical Methods of Physics. Addison-Wesley world student series. W. A. Benjamin, 1970. ISBN: 9780805370027.
[192] A. Nitzan. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford university press, 2006. ISBN: 9780198529798. DOI: 10.1093/oso/9780198529798.001.0001.
[193] K. F. Freed and J. Jortner. “Multiphonon Processes in the Nonradiative Decay of Large Molecules”. In: The Journal of Chemical Physics 52.12 (1970), pp. 6272–6291. DOI: 10.1063/1.1672938.
[194] R. Wang, S. Guo, Z. Zhang, J. Zou, D. Mao, and R. Huang. “Complex Random Telegraph Noise (RTN): What Do We Understand?” In: 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). 2018, pp. 1–7. DOI: 10.1109/IPFA.2018.8452514.
[195] H. Ihantola and J. Moll. “Design Theory of a Surface Field-Effect Transistor”. In: Solid-State Electronics 7.6 (1964), pp. 423–430. ISSN: 0038-1101. DOI: https://doi.org/10.1016/0038-1101(64)90039-5.
[196] C.-T. Sah. “Characteristics of the Metal-Oxide-Semiconductor Transistors”. In: IEEE Transactions on Electron Devices 11.7 (1964), pp. 324–345. DOI: 10.1109/T-ED.1964.15336.
[197] H. Pao and C. Sah. “Effects of Diffusion Current on Characteristics of Metal-Oxide (Insulator)-Semiconductor Transistors”. In: Solid-State Electronics 9.10 (1966), pp. 927–937. ISSN: 0038-1101. DOI: https://doi.org/10.1016/0038-1101(66)90068-2.
[198] C. C. McAndrew. “Compact Models for MOS Transistors: Successes and Challenges”. In: IEEE Transactions on Electron Devices 66.1 (2019), pp. 12–18. DOI: 10.1109/TED.2018.2849943.
[199] J. Brews. “A Charge-Sheet Model of the MOSFET”. In: Solid-State Electronics 21.2 (1978), pp. 345–355. ISSN: 0038-1101. DOI: https://doi.org/10.1016/0038-1101(78)90264-2.
[200] A. Beckers. Cryogenic MOSFET Modeling for Large-Scale Quantum Computing. Tech. rep. EPFL, 2021.
[201] G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. Van Langevelde, G. Smit, A. Scholten, and D. Klaassen. “PSP: An Advanced Surface-Potential-Based MOSFET Model for Circuit Simulation”. In: IEEE Transactions on Electron Devices 53.9 (2006), pp. 1979–1993. DOI: 10.1109/TED.2005.881006.
[202] C. C. Enz, F. Krummenacher, and E. A. Vittoz. “An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications”. In: Analog Integrated Circuits and Signal Processing 8.1 (1995), pp. 83–114. ISSN: 1573-1979. DOI: 10.1007/BF01239381.
[203] C. Galup-Montoro, M. C. Schneider, A. I. A. Cunha, F. R. de Sousa, H. Klimach, and O. F. Siebel. “The Advanced Compact MOSFET (ACM) Model for Circuit Analysis and Design”. In: 2007 IEEE Custom Integrated Circuits Conference. 2007, pp. 519–526. DOI: 10.1109/CICC.2007.4405785.
[204] Y. S. Chauhan, S. Venugopalan, M.-A. Chalkiadaki, M. A. U. Karim, H. Agarwal, S. Khandelwal, N. Paydavosi, J. P. Duarte, C. C. Enz, A. M. Niknejad, and C. Hu. “BSIM6: Analog and RF Compact Model for Bulk MOSFET”. In: IEEE Transactions on Electron Devices 61.2 (2014), pp. 234–244. DOI: 10.1109/TED.2013.2283084.
[205] S. M. Sze, Y. Li, and K. K. Ng. Physics of Semiconductor Devices. John Wiley & sons, 2021.
[206] W. B. Joyce and R. W. Dixon. “Analytic Approximations for the Fermi Energy of an Ideal Fermi Gas”. In: Applied Physics Letters 31.5 (1977), pp. 354–356. DOI: 10.1063/1.89697.
[207] W. Bludau, A. Onton, and W. Heinke. “Temperature Dependence of the Band Gap of Silicon”. In: Journal of Applied Physics 45.4 (1974), pp. 1846–1848. DOI: 10.1063/1.1663501.
[208] J. E. Lang, F. L. Madarasz, and P. M. Hemenger. “Temperature Dependent Density of States Effective Mass in Nonparabolic p-Type Silicon”. In: Journal of Applied Physics 54.6 (1983), pp. 3612–3612. DOI: 10.1063/1.332397.
[209] M. A. Green. “Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon”. In: Journal of Applied Physics 67.6 (1990), pp. 2944–2954. DOI: 10.1063/1.345414.
[210] B. Kaczer, T. Grasser, P. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger. “Origin of NBTI Variability in Deeply Scaled pFETs”. In: 2010 IEEE International Reliability Physics Symposium. 2010, pp. 26–32. DOI: 10.1109/IRPS.2010.5488856.
[211] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. V. H. Winston & Sons, 1977, pp. xiii+258.
[212] C. Schleich, D. Waldhör, K. A. Waschneck, M. Feil, H. Reisinger, T. Grasser, and M. Waltl. “Physical Modeling of Charge Trapping in 4H-SiC DMOSFET Technologies”. In: IEEE Transactions on Electron Devices 68.8 (2021), pp. 4016–4021. DOI: 10.1109/TED.2021.3092295.
[213] M. Waltl. “Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors”. In: IEEE Transactions on Device and Materials Reliability 20.2 (2020), pp. 242–250. DOI: 10.1109/TDMR.2020.2988650.
[214] M. Waltl. “Experimental Characterization of Bias Temperature Instabilities in Modern Transistor Technologies”. PhD thesis. Institut für Mikroelektronik, 2016. DOI: 10.34726/hss.2016.38201.
[215] C. S. Chen, L. Lil, Q. Lim, H. H. Teh, N. F. Binti Omar, C. L. Ler, and J. T. Watt. “A Compact Array for Characterizing 32k Transistors in Wafer Scribe Lanes”. In: 2014 International Conference on Microelectronic Test Structures (ICMTS). 2014, pp. 227–232. DOI: 10.1109/ICMTS.2014.6841497.
[216] M. Simicic, V. Putcha, B. Parvais, P. Weckx, B. Kaczer, G. Groeseneken, G. Gielen, D. Linten, and A. Thean. “Advanced MOSFET Variability and Reliability characterization array”. In: 2015 IEEE International Integrated Reliability Workshop (IIRW). 2015, pp. 73–76. DOI: 10.1109/IIRW.2015.7437071.
[217] E. Bury, B. Kaczer, K. Chuang, J. Franco, P. Weckx, A. Chasin, M. Simicic, D. Linten, and G. Groeseneken. “Statistical Assessment of the Full VG /VD Degradation Space Using Dedicated Device Arrays”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). 2017, pp. 2D-5.1-2D–5.6. DOI: 10.1109/IRPS.2017.7936265.
[218] K.-H. Chuang, E. Bury, R. Degraeve, B. Kaczer, G. Groeseneken, I. Verbauwhede, and D. Linten. “Physically Unclonable Function Using CMOS Breakdown Position”. In: 2017 IEEE International Reliability Physics Symposium (IRPS). 2017, pp. 4C-1.1-4C–1.7. DOI: 10.1109/IRPS.2017.7936312.
[219] E. Bury, A. Chasin, M. Vandemaele, S. Van Beek, J. Franco, B. Kaczer, and D. Linten. “Array-Based Statistical Characterization of CMOS Degradation Modes and Modeling of the Time-Dependent Variability Induced by Different Stress Patterns in the {VG , VD } Bias Space”. In: 2019 IEEE International Reliability Physics Symposium (IRPS). 2019, pp. 1–6. DOI: 10.1109/IRPS.2019.8720592.
[220] Y. Taur and T. H. N. Fundamentals of Modern VLSI Devices. 2nd ed. Cambridge University Press, 2009. DOI: 10.1017/CBO9781139195065.
[221] A. Beckers, D. Beckers, F. Jazaeri, B. Parvais, and C. Enz. “Generalized Boltzmann Relations in Semiconductors Including Band Tails”. In: Journal of Applied Physics 129.4 (2021), p. 045701. DOI: 10.1063/5.0037432.
[222] T. Grasser, B. J. O’Sullivan, B. Kaczer, J. Franco, B. Stampfer, and M. Waltl. “CV Stretch-Out Correction after Bias Temperature Stress: Work-function Dependence of Donor-/Acceptor-like Traps, Fixed Charges, and Fast States”. In: Proceedings of the IEEE International Reliability Physics Symposium (IRPS). 2021, pp. 1–6. ISBN: 978-1-7281-6893-7. DOI: 10.1109/IRPS46558.2021.9405184.
[223] P. A. ’T Hart, M. Babaie, E. Charbon, A. Vladimirescu, and F. Sebastiano. “Characterization and Modeling of Mismatch in Cryo-CMOS”. In: IEEE Journal of the Electron Devices Society 8 (2020), pp. 263–273. DOI: 10.1109/JEDS.2020.2976546.
[224] H. Yang, M. Robitaille, X. Chen, H. Elgabra, L. Wei, and N. Y. Kim. “Random Telegraph Noise of a 28-nm Cryogenic MOSFET in the Coulomb Blockade Regime”. In: IEEE Electron Device Letters 43.1 (2022), pp. 5–8. DOI: 10.1109/LED.2021.3132964.
[225] Y. Ono, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, H. Inokawa, and Y. Takahashi. “Conductance Modulation by Individual Acceptors in Si Nanoscale Field-Effect Transistors”. In: Applied Physics Letters 90.10 (2007), p. 102106. DOI: 10.1063/1.2679254.
[226] S. Bonen, U. Alakusu, Y. Duan, M. J. Gong, M. S. Dadash, L. Lucci, D. R. Daughton, G. C. Adam, S. Iordănescu, M. Pǎşteanu, I. Giangu, H. Jia, L. E. Gutierrez, W. T. Chen, N. Messaoudi, D. Harame, A. Müller, R. R. Mansour, P. Asbeck, and S. P. Voinigescu. “Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs”. In: IEEE Electron Device Letters 40.1 (2019), pp. 127–130. DOI: 10.1109/LED.2018.2880303.
[227] H.-C. Han, F. Jazaeri, A. D’Amico, A. Baschirotto, E. Charbon, and C. Enz. “Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing”. In: ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). 2021, pp. 71–74. DOI: 10.1109/ESSCIRC53450.2021.9567747.
[228] P. A. ’T Hart, M. Babaie, E. Charbon, A. Vladimirescu, and F. Sebastiano. “Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures”. In: ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC). 2019, pp. 98–101. DOI: 10.1109/ESSDERC.2019.8901745.
[229] G. Niu, J. Cressler, S. Mathew, and D. Ahlgren. “Enhanced Low-Temperature Corner Current-Carrying Inherent to Shallow Trench Isolation (STI)”. In: IEEE Electron Device Letters 20.10 (1999), pp. 520–522. DOI: 10.1109/55.791929.
[230] P. Welch. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms”. In: IEEE Transactions on Audio and Electroacoustics 15.2 (1967), pp. 70–73. DOI: 10.1109/TAU.1967.1161901.
[231] M. S. Bartlett. “Periodogram Analysis and Continuous Spectra”. In: Biometrika 37.1/2 (1950), pp. 1–16. ISSN: 00063444.
[232] F. Hooge. “1/f Noise Is No Surface Effect”. In: Physics Letters A 29.3 (1969), pp. 139–140. ISSN: 0375-9601. DOI: https://doi.org/10.1016/0375-9601(69)90076-0.
[233] K. . Hung, P. Ko, C. Hu, and Y. Cheng. “A Unified Model For the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors”. In: IEEE Transactions on Electron Devices 37.3 (1990), pp. 654–665. DOI: 10.1109/16.47770.
[234] J. Craninckx, A. Potočnik, B. Parvais, A. Grill, S. Narasimhamoorthy, S. Van Winckel, S. Brebels, M. Mongillo, R. Li, B. Govoreanu, and I. Radu. “CMOS Cryo-Electronics for Quantum Computing”. In: 2020 IEEE International Electron Devices Meeting (IEDM). 2020, pp. 25.1.1–25.1.4. DOI: 10.1109/IEDM13553.2020.9371897.
[235] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–698. DOI: 10.1109/TPAMI.1986.4767851.
[236] A. Grill. “Charge Trapping and Single-Defect Extraction in Gallium-Nitride Based MIS-HEMTs”. PhD thesis. Institut für Mikroelektronik, 2018. DOI: 10.34726/hss.2018.60228.
[237] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”. In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66. DOI: 10.1109/TSMC.1979.4310076.
[238] A. Chambolle. “An Algorithm for Total Variation Minimization and Applications”. In: Journal of Mathematical Imaging and Vision 20.1 (2004), pp. 89–97. ISSN: 1573-7683. DOI: 10.1023/B:JMIV.0000011325.36760.1e.
[239] F. M. Puglisi and P. Pavan. “Factorial Hidden Markov Model Analysis of Random Telegraph Noise in Resistive Random Access Memories”. In: ECTI Transactions on Electrical Engineering, Electronics, and Communications 12.1 (Jan. 2014), pp. 24–29. DOI: 10.37936/ecti-eec.2014121.170814.
[240] A. Asenov, R. Balasubramaniam, A. Brown, and J. Davies. “RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study”. In: IEEE Transactions on Electron Devices 50.3 (2003), pp. 839–845. DOI: 10.1109/TED.2003.811418.
[241] T. Knobloch. “On the Electrical Stability of 2D Material-Based Field-Effect Transistors”. PhD thesis. Institut für Mikroelektronik, 2021.
[242] M. G. Peters, J. I. Dijkhuis, and L. W. Molenkamp. “Random Telegraph Signals and 1/f Noise in a Silicon Quantum Dot”. In: Journal of Applied Physics 86.3 (1999), pp. 1523–1526. DOI: 10.1063/1.370924.
[243] J. E. Thomas and D. R. Young. “Space-Charge Model for Surface Potential Shifts in Silicon Passivated with Thin Insulating Layers”. In: IBM Journal of Research and Development 8.4 (1964), pp. 368–375. DOI: 10.1147/rd.84.0368.
[244] Y. Miura and Y. Matukura. “Investigation of Silicon-Silicon Dioxide Interface Using MOS Structure”. In: Japanese Journal of Applied Physics 5.2 (Feb. 1966), pp. 180–180. DOI: 10.1143/jjap.5.180.
[245] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow. “Characteristics of the Surface-State Charge (Qss ) of Thermally Oxidized Silicon”. In: Journal of The Electrochemical Society 114.3 (1967), p. 266. DOI: 10.1149/1.2426565.
[246] T. Grasser, M. Waltl, Y. Wimmer, W. Gös, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A.-M. El-Sayed, A. L. Shluger, and B. Kaczer. “Gate-Sided Hydrogen Release as the Origin of ”Permanent” NBTI Degradation: From Single Defects to Lifetimes”. In: Proceedings of the IEEE International Electron Devices Meeting (IEDM). 2015, pp. 535–538. DOI: 10.1109/IEDM.2015.7409739.
[247] T. Grasser, B. Stampfer, M. Waltl, G. Rzepa, K. Rupp, F. Schanovsky, G. Pobegen, K. Puschkarsky, H. Reisinger, B. J. O’Sullivan, and B. Kaczer. “Characterization and Physical Modeling of the Temporal Evolution of Near-Interfacial States Resulting from NBTI/PBTI Stress in nMOS/pMOS Transistors”. In: Proceedings of the IEEE International Reliability Physics Symposium (IRPS). 2018, 2A.2-1–2A.2-10.
[248] B. Kaczer, T. Grasser, P. J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing-New Evaluation and Insights”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2008, pp. 20–27.
[249] T. Grasser, H. Reisinger, P. Wagner, B. Kaczer, F. Schanovsky, and W. Gös. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2010, pp. 16–25. ISBN: 978-1-4244-5431-0.
[250] M. Waltl, B. Stampfer, G. Rzepa, B. Kaczer, and T. Grasser. “Separation of Electron and Hole Trapping Components of PBTI in SiON nMOS Transistors”. In: Microelectronics Reliability 114 (2020), pp. 113746-1–113746-5. DOI: 10.1016/j.microrel.2020.113746.
[251] T. Grasser, W. Gös, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V. V. Afanas’Ev, A. Stesmans, A.-M. El-Sayed, and A. L. Shluger. “On the Microscopic Structure of Hole Traps in pMOSFETs”. In: Proceedings of the IEEE International Electron Devices Meeting (IEDM). 2014, pp. 530–533. ISBN: 978-1-4799-8001-7. DOI: 10.1109/IEDM.2014.7047093.
[252] R. Courant, P. Lax, and D. Hilbert. Methoden der Mathematischen Physik. Springer Berlin Heidelberg, 2013. ISBN: 9783642580390.
[MJJ1] J. Michl, A. Grill, D. Waldhör, W. Goes, B. Kaczer, D. Linten, B. Parvais, B. Govoreanu, I. Radu, M. Waltl, and T. Grasser. “Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part I: Theory”. In: IEEE Transactions on Electron Devices 68.12 (2021), pp. 6365–6371. DOI: 10.1109/TED.2021.3116931.
[MJJ2] D. Waldhör, C. Schleich, J. Michl, B. Stampfer, K. Tselios, E. Ioannidis, H. Enichlmair, M. Waltl, and T. Grasser. “Toward Automated Defect Extraction From Bias Temperature Instability Measurements”. In: IEEE Transactions on Electron Devices 68.8 (2021), pp. 4057–4063. DOI: 10.1109/TED.2021.3091966.
[MJJ3] K. Tselios, D. Waldhör, B. Stampfer, J. Michl, E. Ioannidis, H. Enichlmair, T. Grasser, and M. Waltl. “On the Distribution of Single Defect Threshold Voltage Shifts in SiON Transistors”. In: IEEE Transactions on Device and Materials Reliability 91.2 (2021), pp. 199–206. DOI: 10.1109/TDMR.2021.3080983.
[MJJ4] A. Beckers, J. Michl, A. Grill, B. Kaczer, M. G. Bardon, B. Parvais, B. Govoreanu, K. De Greve, G. Hiblot, and G. Hellings. “Physics-Based and Closed-Form Model for Cryogenic MOSFET Subthreshold Swing”. In: IEEE Transactions on Electron Devices (2022). Submitted.
[MJJ5] J. Michl, A. Grill, D. Waldhör, W. Goes, B. Kaczer, D. Linten, B. Parvais, B. Govoreanu, I. Radu, T. Grasser, and M. Waltl. “Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental”. In: IEEE Transactions on Electron Devices 68.12 (2021), pp. 6372–6378. DOI: 10.1109/TED.2021.3117740.
[MJJ6] C. Schleich, D. Waldhör, T. Knobloch, W. Zhou, B. Stampfer, J. Michl, M. Waltl, and T. Grasser. “Single-Versus Multi-Step Trap Assisted Tunneling Currents – Part I: Theory”. In: IEEE Transactions on Electron Devices (2022), pp. 1–7. DOI: 10.1109/TED.2022.3185966.
[MJC1] K. Tselios, B. Stampfer, J. Michl, E. Ioannidis, H. Enichlmair, and M. Waltl. “Distribution of Step Heights of Electron and Hole Traps in SiON nMOS Transistors”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). 2020, pp. 1–6. DOI: 10.1109/IIRW49815.2020.9312871.
[MJC2] K. Tselios, J. Michl, T. Knobloch, H. Enichlmair, E. Ioannidis, R. Minixhofer, T. Grasser, and M. Waltl. “Evaluation of the Impact of Defects on Threshold Voltage Drift Employing SiO2 pMOS Transistors”. In: Abstracts of the 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis. Accepted. 2022, p. 99.
[MJC3] A. Grill, E. Bury, J. Michl, S. E. Tyaginov, D. Linten, T. Grasser, B. Parvais, B. Kaczer, M. Waltl, and I. Radu. “Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures”. In: Proceedings of the IEEE International Reliability Physics Symposium (IRPS). 2020, pp. 1–6. ISBN: 978-1-7281-3199-3. DOI: 10.1109/IRPS45951.2020.9128316.
[MJC4] J. Michl, A. Grill, B. Stampfer, D. Waldhoer, C. Schleich, T. Knobloch, E. Ioannidis, H. Enichlmair, R. Minixhofer, B. Kaczer, B. Parvais, B. Govoreanu, I. Radu, T. Grasser, and M. Waltl. “Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS”. In: 2021 IEEE International Electron Devices Meeting (IEDM). 2021, pp. 31.3.1–31.3.4. DOI: 10.1109/IEDM19574.2021.9720501.
[MJC5] A. Grill, V. John, J. Michl, A. Beckers, E. Bury, S. Tyaginov, B. Parvais, A. V. Chasin, T. Grasser, M. Waltl, B. Kaczer, and B. Govoreanu. “Temperature Dependent Mismatch and Variability in a Cryo-CMOS Array with 30k Transistors”. In: 2022 IEEE International Reliability Physics Symposium (IRPS). 2022, 10A.1-1-10A.1–6. DOI: 10.1109/IRPS48227.2022.9764594.
[MJC6] T. Knobloch, J. Michl, D. Waldhör, Y. Illarionov, B. Stampfer, A. Grill, R. Zhou, P. Wu, M. Waltl, J. Appenzeller, and T. Grasser. “Analysis of Single Electron Traps in Nano-scaled MoS2 FETs at Cryogenic Temperatures”. In: Proceedings of the Device Research Conference (DRC). 2020, pp. 52–53.
[MJC7] J. Michl, A. Grill, D. Claes, G. Rzepa, B. Kaczer, D. Linten, I. Radu, T. Grasser, and M. Waltl. “Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures”. In: Proceedings of the IEEE International Reliability Physics Symposium (IRPS). 2020, pp. 1–6. ISBN: 978-1-7281-3199-3. DOI: 10.1109/IRPS45951.2020.9128349.