(image) (image) [Previous] [Next]

Modeling of Defect Related Reliability Phenomena
in SiC Power-MOSFETs

References

  • [1] IPCC Sixth Assessment Report. Working Group 1: The Physical Science Basis. 2021. url: https://www.ipcc.ch/report/ar6/wg1/ (visited on 05/30/2022).

  • [2] B.J. Baliga. “Power semiconductor device figure of merit for high-frequency applications”. In: IEEE Electron Device Letters 10.10 (1989), pp. 455–457. doi: 10.1109/55.43098.

  • [3] International Energy Agency. 2021. url: https://www.iea.org/fuels-and-technologies/electricity (visited on 11/24/2021).

  • [4] J. W. Palmour. “Silicon Carbide Power Device Development for Industrial Markets”. In: 2014 IEEE International Electron Devices Meeting. 2014, pp. 1.1.1–1.1.8. doi: 10.1109/IEDM.2014.7046960.

  • [5] C. Langpoklakpam, A.-C. Liu, K.-H. Chu, L.-H. Hsu, W.-C. Lee, S.-C. Chen, C.-W. Sun, M.-H. Shih, K.-Y. Lee, and H.-C. Kuo. “Review of Silicon Carbide Processing for Power MOSFET”. In: Crystals 12.2 (2022). doi: 10.3390/cryst12020245.

  • [6] B. J. Baliga. “Semiconductors for High-Voltage, Vertical Channel Field-Effect Transistors”. In: Journal of Applied Physics 53.3 (1982), pp. 1759–1764. doi: 10.1063/1.331646.

  • [7] E. Johnson. “Physical Limitations on Frequency and Power Parameters of Transistors”. In: 1958 IRE International Convention Record. Vol. 13. 1965, pp. 27–34. doi: 10.1109/IRECON.1965.1147520.

  • [8] R.W. Keyes. “Figure of Merit for Semiconductors for High-Speed Switches”. In: Proceedings of the IEEE 60.2 (1972), pp. 225–225. doi: 10.1109/PROC.1972.8593.

  • [9] K. Shenai, R.S. Scott, and B.J. Baliga. “Optimum Semiconductors for High-Power Electronics”. In: IEEE Transactions on Electron Devices 36.9 (1989), pp. 1811–1823. doi: 10.1109/16.34247.

  • [10] S. J. Pearton, Jiancheng Yang, Patrick H. Cary, F. Ren, Jihyun Kim, Marko J. Tadjer, and Michael A. Mastro. “A Review of Ga2 O3 Materials, Processing, and Devices”. In: Applied Physics Reviews 5.1 (2018), p. 011301. doi: 10.1063/1.5006941.

  • [11] K. Shenai. “The Figure of Merit of a Semiconductor Power Electronics Switch”. In: IEEE Transactions on Electron Devices 65.10 (2018), pp. 4216–4224. doi: 10.1109/TED.2018.2866360.

  • [12] I.-J. Kim, S. Matsumoto, T. Sakai, and T. Yachi. “New Power Device Figure of Merit for High-Frequency Applications”. In: Proceedings of International Symposium on Power Semiconductor Devices and IC’s: ISPSD ’95. 1995, pp. 309–314. doi: 10.1109/ISPSD.1995.515055.

  • [13] A.Q. Huang. “New Unipolar Switching Power Device Figures of Merit”. In: IEEE Electron Device Letters 25.5 (2004), pp. 298–301. doi: 10.1109/LED.2004.826533.

  • [14] J.E. Lilienfeld. Method and Apparatus for Controlling Electric Currents. US Patent 1745175. 1926.

  • [15] K. Dawon. Electric Field Controlled Semiconductor Device. US Patent 3,102,230. Aug. 1963.

  • [16] Cree Inc.. 2021. url: https://www.wolfspeed.com/ (visited on 11/24/2021).

  • [17] D.L. Barrett, J.P. McHugh, H.M. Hobgood, R.H. Hopkins, P.G. McMullin, R.C. Clarke, and W.J. Choyke. “Growth of Large SiC Single Crystals”. In: Journal of Crystal Growth 128.1-4 (1993), pp. 358–362. doi: https://doi.org/10.1016/0022-0248(93)90348-Z.

  • [18] R.F. Davis, C.H. Carter Jr, and C.E. Hunter. Sublimation of Silicon Carbide to Produce Large, Device Quality Single Crystals of Silicon Carbide. US Patent App. 07/594,856. 1995.

  • [19] Infineon Technologies. 2021. url: https://www.infineon.com/ (visited on 11/24/2021).

  • [20] T. Kimoto. “Material Science and Device Physics in SiC Technology for High-Voltage Power Devices”. In: 54.4 (Mar. 2015), p. 040103. doi: 10.7567/jjap.54.040103. url: https://doi.org/10.7567/jjap.54.040103.

  • [21] G. R. Fisher and P. Barnes. “Towards a Unified View of Polytypism in Silicon Carbide”. In: Philosophical Magazine B 61.2 (1990), pp. 217–236. doi: 10.1080/13642819008205522.

  • [22] T. Kimoto and J. A. Cooper. Fundamentals of SiC Technology. J.Wiley, 2014. isbn: 9781118313527. doi: 10.1002/9781118313534.

  • [23] K. Momma and F. Izumi. “VESTA3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data”. In: Journal of Applied Crystallography 44.6 (Dec. 2011), pp. 1272–1276. doi: 10.1107/S0021889811038970.

  • [24] P. Villars and K. Cenzual, eds. 4H-SiC (SiC 4H) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012” in SpringerMaterials. accessed 2021-11-09. url: https://materials.springer.com/isp/crystallographic/docs/sd_1628877.

  • [25] C. Persson and U. Lindefelt. “Detailed Band Structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the Fundamental Band Gap”. In: Phys. Rev. B 54 (15 Oct. 1996), pp. 10257–10260. doi: 10.1103/PhysRevB.54.10257.

  • [26] Y.P. Varshni. “Temperature Dependence of the Energy Gap in Semiconductors”. In: Physica 34.1 (1967), pp. 149–154. issn: 0031-8914. doi: https://doi.org/10.1016/0031-8914(67)90062-6.

  • [27] S.G Sridhara, T.J Eperjesi, R.P Devaty, and W.J Choyke. “Penetration Depths in the Ultraviolet for 4H, 6H and 3C Silicon Carbide at Seven Common Laser Pumping Wavelengths”. In: Materials Science and Engineering: B 61-62 (1999), pp. 229–233. issn: 0921-5107. doi: https://doi.org/10.1016/S0921-5107(98)00508-X.

  • [28] A. Galeckas, P. Grivickas, V. Grivickas, V. Bikbajevas, and J. Linnros. “Temperature Dependence of the Absorption Coefficient in 4H-and 6H-Silicon Carbide at 355 nm Laser Pumping Wavelength”. In: physica status solidi (a) 191.2 (2002), pp. 613–620. doi: https://doi.org/10.1002/1521-396X(200206)191:2<613::AID-PSSA613>3.0.CO;2-T.

  • [29] D. Volm, B. K. Meyer, D. M. Hofmann, W. M. Chen, N. T. Son, C. Persson, U. Lindefelt, O. Kordina, E. Sörman, A. O. Konstantinov, B. Monemar, and E. Janzén. “Determination of the Electron Effective-Mass Tensor in 4H SiC”. In: Phys. Rev. B 53 (23 June 1996), pp. 15409–15412. doi: 10.1103/PhysRevB.53.15409.

  • [30] W. M. Chen, N. T. Son, E. Janzén, D. M. Hofmann, and B. K. Meyer. “Effective Masses in SiC Determined by Cyclotron Resonance Experiments”. In: physica status solidi (a) 162.1 (1997), pp. 79–93. doi: https://doi.org/10.1002/1521-396X(199707)162:1<79::AID-PSSA79>3.0.CO;2-D.

  • [31] S.M. Sze and K.K. Ng. Physics of Semiconductor Devices. Wiley, 2006. isbn: 9780470068304.

  • [32] G. Wellenhofer and U. Roessler. “Global Band Structure and Near-Band-Edge States”. In: physica status solidi (b) 202.1 (1997), pp. 107–123. doi: https://doi.org/10.1002/1521-3951(199707)202:1<107::AID-PSSB107>3.0.CO;2-9.

  • [33] T. Hatakeyama, K. Fukuda, and H. Okumura. “Physical Models for SiC and their Application to Device Simulations of SiC Insulated-Gate Bipolar Transistors”. In: IEEE Transactions on Electron Devices 60.2 (2012), pp. 613–621. doi: 10.1109/TED.2012.2226590.

  • [34] D.M. Caughey and R.E. Thomas. “Carrier Mobilities in Silicon Empirically Related to Doping and Field”. In: Proceedings of the IEEE 55.12 (1967), pp. 2192–2193. doi: 10.1109/PROC.1967.6123.

  • [35] A. Sakwe, M. Stockmeier, P. Hens, R. Müller, D. Queren, U. Kunecke, K. Konias, R. Hock, A. Magerl, M. Pons, A. Winnacker, and P. Wellmann. “Bulk Growth of SiC – Review on Advances of SiC Vapor Growth for Improved Doping and Systematic Study on Dislocation Evolution”. In: physica status solidi (b) 245.7 (2008), pp. 1239–1256. doi: https://doi.org/10.1002/pssb.200743520.

  • [36] P. J. Wellmann. “Review of SiC Crystal Growth Technology”. In: 33.10 (Sept. 2018), p. 103001. doi: 10.1088/1361-6641/aad831.

  • [37] H. Matsunami and T. Kimoto. “Step-Controlled Epitaxial Growth of SiC: High Quality Homoepitaxy”. In: Materials Science and Engineering: R: Reports 20.3 (1997). R20, pp. 125–166. issn: 0927-796X. doi: https://doi.org/10.1016/S0927-796X(97)00005-3.

  • [38] T. Kimoto, A. Itoh, and H. Matsunami. “Step-Controlled Epitaxial Growth of High-Quality SiC Layers”. In: physica status solidi (b) 202.1 (1997), pp. 247–262. doi: https://doi.org/10.1002/1521-3951(199707)202:1<247::AID-PSSB247>3.0.CO;2-Q.

  • [39] R. J. Price. “Properties of Silicon Carbide for Nuclear Fuel Particle Coatings”. In: Nuclear Technology 35.2 (1977), pp. 320–336. doi: 10.13182/NT77-A31892.

  • [40] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami. “Electronic Behaviors of High-Dose Phosphorus-Ion Implanted 4H–SiC (0001)”. In: Journal of Applied Physics 96.1 (2004), pp. 224–228. doi: 10.1063/1.1756213.

  • [41] Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams. “Modified Deal Grove Model for the Thermal Oxidation of Silicon Carbide”. In: Journal of Applied Physics 95.9 (2004), pp. 4953–4957. doi: 10.1063/1.1690097.

  • [42] C. Kim, J. Hyun Moon, J. Hyuk Yim, D. Hyun Lee, J. Ho Lee, H. Hee Lee, and H. Joon Kim. “Comparison of Thermal and Atomic-Layer-Deposited Oxides on 4H-SiC after Post-Oxidation-Annealing in Nitric Oxide”. In: Applied Physics Letters 100.8 (2012), p. 082112. doi: 10.1063/1.3689766.

  • [43] A. Pérez-Tomás, P. Godignon, N. Mestres, R. Pérez, and J. Millán. “A Study of the Influence of the Annealing Processes and Interfaces with Deposited SiO2 from Tetra-Ethoxy-Silane for Reducing the Thermal Budget in the Gate Definition of 4H–SiC Devices”. In: Thin Solid Films 513.1 (2006), pp. 248–252. issn: 0040-6090. doi: https://doi.org/10.1016/j.tsf.2005.12.308.

  • [44] J.H. Moon, I.H. Kang, H.W. Kim, O.S., W. Bahng, and M.-W. Ha. “TEOS-Based Low-Pressure Chemical Vapor Deposition for Gate Oxides in 4H–SiC MOSFETs using Nitric Oxide Post-Deposition Annealing”. In: Current Applied Physics 20.12 (2020), pp. 1386–1390. issn: 1567-1739. doi: https://doi.org/10.1016/j.cap.2020.09.003.

  • [45] W. Shockley and G. L. Pearson. “Modulation of Conductance of Thin Films of Semi-Conductors by Surface Charges”. In: Phys. Rev. 74 (2 July 1948), pp. 232–233. doi: 10.1103/PhysRev.74.232.

  • [46] T. Aichinger and M. Nelhiebel. “Advanced Energetic and Lateral Sensitive Charge Pumping Profiling Methods for MOSFET Device Characterization — Analytical Discussion and Case Studies”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 509–518. doi: 10.1109/TDMR.2008.2002352.

  • [47] A. Chanthaphan, T. Hosoi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe. “Investigation of Unusual Mobile Ion Effects in Thermally Grown SiO2 on 4H-SiC(0001) at High Temperatures”. In: Applied Physics Letters 100.25 (2012), p. 252103. doi: 10.1063/1.4729780.

  • [48] J. Pernot, W. Zawadzki, S. Contreras, J. L. Robert, E. Neyret, and L. Di Cioccio. “Electrical Transport in n-type 4H Silicon Carbide”. In: Journal of Applied Physics 90.4 (2001), pp. 1869–1878. doi: 10.1063/1.1382849.

  • [49] G. Ghibaudo. “New Method for the Extraction of MOSFET Parameters”. In: Electronics Letters 24 (9 Apr. 1988), 543–545(2). doi: 10.1049/el:19880369.

  • [50] S. Potbhare, N. Goldsman, A. Lelis, J. M. McGarrity, F. B. McLean, and D. Habersat. “A Physical Model of High Temperature 4H-SiC MOSFETs”. In: IEEE Transactions on Electron Devices 55.8 (2008), pp. 2029–2040. doi: 10.1109/TED.2008.926665.

  • [51] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “Improved Interface Trap Density Close to the Conduction Band Edge of a-Face 4H-SiC MOSFETs Revealed Using the Charge Pumping Technique”. In: Silicon Carbide and Related Materials 2016. Vol. 897. Materials Science Forum. Trans Tech Publications Ltd, June 2017, pp. 143–146. doi: 10.4028/www.scientific.net/MSF.897.143.

  • [52] G. Liu, B. R. Tuttle, and S. Dhar. “Silicon Carbide: A Unique Platform for Metal-Oxide-Semiconductor Physics”. In: Applied Physics Reviews 2.2 (2015), p. 021307. doi: 10.1063/1.4922748.

  • [53] E. Fujita, M. Sometani, T. Hatakeyama, S. Harada, H. Yano, T. Hosoi, T. Shimura, and H. Watanabe. “Insight Into Enhanced Field-Effect Mobility of 4H-SiC MOSFET with Ba Incorporation Studied by Hall Effect Measurements”. In: AIP Advances 8.8 (2018), p. 085305. doi: 10.1063/1.5034048.

  • [54] Tibor Grasser. Bias Temperature Instability for Devices and Circuits. Springer Science & Business Media, 2013. doi: https://doi.org/10.1007/978-1-4614-7909-3.

  • [55] Y. Miura and Y. Matukura. “Investigation of Silicon-Silicon Dioxide Interface Using MOS Structure”. In: Japanese Journal of Applied Physics 5.2 (Feb. 1966), pp. 180–180. doi: 10.1143/jjap.5.180.

  • [56] A. Goetzberger and H.E. Nigh. “Surface charge after annealing of Al-SiO2 -Si structures under bias”. In: Proceedings of the IEEE 54.10 (1966), pp. 1454–1454. doi: 10.1109/PROC.1966.5134.

  • [57] S.R. Hofstein. “Stabilization of MOS Devices”. In: Solid-State Electronics 10.7 (1967), pp. 657–670. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(67)90096-2.

  • [58] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow. “Characteristics of the Surface-State Charge (Qss ) of Thermally Oxidized Silicon”. In: Journal of The Electrochemical Society 114.3 (1967), p. 266. doi: 10.1149/1.2426565.

  • [59] A. K. Sinha and T. E. Smith. “Kinetics of the Slow-Trapping Instability at the Si/SiO2 Interface”. In: Journal of The Electrochemical Society 125.5 (May 1978), pp. 743–746. doi: 10.1149/1.2131539.

  • [60] J.H. Stathis and S. Zafar. “The Negative Bias Temperature Instability in MOS Devices: A Review”. In: Microelectronics Reliability 46.2 (2006), pp. 270–286. doi: https://doi.org/10.1016/j.microrel.2005.08.001.

  • [61] F.P. Heiman and G. Warfield. “The Effects of Oxide Traps on the MOS Capacitance”. In: IEEE Transactions on Electron Devices 12.4 (1965), pp. 167–178. doi: 10.1109/T-ED.1965.15475.

  • [62] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Phys. Rev. 87 (5 Sept. 1952), pp. 835–842. doi: 10.1103/PhysRev.87.835.

  • [63] K. O. Jeppson and C. M. Svensson. “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices”. In: Journal of Applied Physics 48.5 (1977), pp. 2004–2014. doi: 10.1063/1.323909.

  • [64] S. Ogawa and N. Shiono. “Generalized Diffusion-Reaction Model for the Low-Field Charge-Buildup Instability at the Si-SiO2 Interface”. In: Phys. Rev. B 51 (7 Feb. 1995), pp. 4218–4230. doi: 10.1103/PhysRevB.51.4218.

  • [65] M.A. Alam and S. Mahapatra. “A Comprehensive Model of PMOS NBTI Degradation”. In: Microelectronics Reliability 45.1 (2005), pp. 71–81. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2004.03.019.

  • [66] M. J. Uren, D. J. Day, and M. J. Kirton. “1/f and Random Telegraph Noise in Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Applied Physics Letters 47.11 (1985), pp. 1195–1197. doi: 10.1063/1.96325.

  • [67] M.J. Kirton and M.J. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/ƒ) Noise”. In: Advances in Physics 38.4 (1989), pp. 367–468. doi: 10.1080/00018738900101122.

  • [68] T. L. Tewksbury. “Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps”. PhD thesis. Massachusetts Institute of Technology, 1992.

  • [69] T.L. Tewksbury and Hae-Seung L. “Characterization, Modeling, and Minimization of Transient Threshold Voltage Shifts in MOSFETs”. In: IEEE Journal of Solid-State Circuits 29.3 (1994), pp. 239–252. doi: 10.1109/4.278345.

  • [70] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel. “A Two-Stage Model for Negative Bias Temperature Instability”. In: 2009 IEEE International Reliability Physics Symposium. 2009, pp. 33–44. doi: 10.1109/IRPS.2009.5173221.

  • [71] T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: 2010 IEEE International Reliability Physics Symposium. 2010, pp. 16–25. doi: 10.1109/IRPS.2010.5488859.

  • [72] T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, and B. Kaczer. “A Unified Perspective of RTN and BTI”. In: 2014 IEEE International Reliability Physics Symposium. 2014, 4A.5.1–4A.5.7. doi: 10.1109/IRPS.2014.6860643.

  • [73] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52.1 (2012), pp. 39–70. doi: 10.1016/j.microrel.2011.09.002.

  • [74] F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser. “A Multi Scale Modeling Approach to Non-Radiative Multi Phonon Transitions at Oxide Defects in MOS Structures”. In: Journal of Computational Electronics 11.3 (2012), pp. 218–224. doi: 10.1007/s10825-012-0403-1.

  • [75] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, M. Toledano Toledano Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction–Diffusion to Switching Oxide Traps”. In: IEEE Transactions on Electron Devices 58.11 (2011), pp. 3652–3666. doi: 10.1109/TED.2011.2164543.

  • [76] M. J. Uren, M. J. Kirton, and S. Collins. “Anomalous Telegraph Noise in Small-Area Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Phys. Rev. B 37 (14 May 1988), pp. 8346–8350. doi: 10.1103/PhysRevB.37.8346.

  • [77] W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A.L. Shluger, and T. Grasser. “Identification of Oxide Defects in Semiconductor Devices: A Systematic Approach linking DFT to Rate Equations and Experimental Evidence”. In: Microelectronics Reliability 87 (2018), pp. 286–320. doi: https://doi.org/10.1016/j.microrel.2017.12.021.

  • [78] J. H. Stathis, S. Mahapatra, and T. Grasser. “Controversial Issues in Negative Bias Temperature Instability”. In: Microelectronics Reliability 81 (2018), pp. 244–251. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2017.12.035.

  • [79] A. J. Lelis, D. B. Habersat, G. Lopez, J.M. McGarrity, F. B. McLean, and N. Goldsman. “Bias Stress-Induced Threshold-Voltage Instability of SiC MOSFETs”. In: Silicon Carbide and Related Materials 2005. Vol. 527. Materials Science Forum. Trans Tech Publications Ltd, Oct. 2006, pp. 1317–1320. doi: 10.4028/www.scientific.net/MSF.527-529.1317.

  • [80] A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman. “Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements”. In: IEEE Transactions on Electron Devices 55.8 (2008), pp. 1835–1840. doi: 10.1109/TED.2008.926672.

  • [81] A. J. Lelis, D. B. Habersat, R. Green, and N. Goldsman. “Temperature - Dependence of SiC MOSFET Threshold-Voltage Instability”. In: Silicon Carbide and Related Materials 2007. Vol. 600. Materials Science Forum. Trans Tech Publications Ltd, Feb. 2009, pp. 807–810. doi: 10.4028/www.scientific.net/MSF.600-603.807.

  • [82] T. Okayama, S.D. Arthur, J.L. Garrett, and M.V. Rao. “Bias-Stress Induced Threshold Voltage and Drain Current Instability in 4H–SiC DMOSFETs”. In: Solid-State Electronics 52.1 (2008), pp. 164–170. issn: 0038-1101. doi: https://doi.org/10.1016/j.sse.2007.07.031.

  • [83] K. Puschkarsky, T. Grasser, T. Aichinger, W. Gustin, and H. Reisinger. “Understanding and Modeling Transient Threshold Voltage Instabilities in SiC MOSFETs”. In: 2018 IEEE International Reliability Physics Symposium (IRPS). 2018. doi: 10.1109/IRPS.2018.8353560.

  • [84] J. Rozen, S. Dhar, S. T. Pantelides, L. C. Feldman, S. Wang, J. R. Williams, and V. V. Afanasev. “Suppression of Interface State Generation upon Electron Injection in Nitrided Oxides Grown on 4H-SiC”. In: Applied Physics Letters 91.15 (2007), p. 153503. doi: 10.1063/1.2790374.

  • [85] R. Arora, J. Rozen, D. M. Fleetwood, K. F. Galloway, C. X. Zhang, J. Han, S. Dimitrijev, F. Kong, L. C. Feldman, S. T. Pantelides, and R. D. Schrimpf. “Charge Trapping Properties of 3C- and 4H-SiC MOS Capacitors With Nitrided Gate Oxides”. In: IEEE Transactions on Nuclear Science 56.6 (2009), pp. 3185–3191. doi: 10.1109/TNS.2009.2031604.

  • [86] X. Shen, E. X. Zhang, C. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-H. Ryu, and S. T. Pantelides. “Atomic-Scale Origins of Bias-Temperature Instabilities in SiC-SiO2 Structures”. In: Applied Physics Letters 98.6 (2011), p. 063507. doi: 10.1063/1.3554428.

  • [87] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “Comprehensive Evaluation of Bias Temperature Instabilities on 4H-SiC MOSFETs Using Device Preconditioning”. In: Silicon Carbide and Related Materials 2017. Vol. 924. Materials Science Forum. Trans Tech Publications Ltd, July 2018, pp. 671–675. doi: 10.4028/www.scientific.net/MSF.924.671.

  • [88] T. Aichinger, G. Rescher, and G. Pobegen. “Threshold Voltage Peculiarities and Bias Temperature Instabilities of SiC MOSFETs”. In: Microelectronics Reliability 80 (2018), pp. 68–78. doi: https://doi.org/10.1016/j.microrel.2017.11.020.

  • [89] K. Puschkarsky, H. Reisinger, C. Schlünder, W. Gustin, and T. Grasser. “Fast Acquisition of Activation Energy Maps using Temperature Ramps for Lifetime Modeling of BTI”. In: 2018 48th European Solid-State Device Research Conference (ESSDERC). 2018, pp. 218–221. doi: 10.1109/ESSDERC.2018.8486855.

  • [90] K. Puschkarsky, T. Grasser, T. Aichinger, W. Gustin, and H. Reisinger. “Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability”. In: IEEE Transactions on Electron Devices 66.11 (2019), pp. 4604–4616. doi: 10.1109/TED.2019.2938262.

  • [91] H. Jiang, X. Zhong, G. Qiu, L. Tang, X. Qi, and L. Ran. “Dynamic Gate Stress Induced Threshold Voltage Drift of Silicon Carbide MOSFET”. In: IEEE Electron Device Letters 41.9 (2020), pp. 1284–1287. doi: 10.1109/LED.2020.3007626.

  • [92] P. Salmen, M. W. Feil, K. Waschneck, H. Reisinger, G. Rescher, and T. Aichinger. “A New Test Procedure to Realistically Estimate End-Of-Life Electrical Parameter Stability of SiC MOSFETs in Switching Operation”. In: 2021 IEEE International Reliability Physics Symposium (IRPS). 2021, pp. 1–7. doi: 10.1109/IRPS46558.2021.9405207.

  • [93] X. Zhong, H. Jiang, G. Qiu, L. Tang, H. Mao, C. Xu, X. Jiang, J. Hu, X. Qi, and L. Ran. “Bias Temperature Instability of Silicon Carbide Power MOSFET Under AC Gate Stresses”. In: IEEE Transactions on Power Electronics 37.2 (2022), pp. 1998–2008. doi: 10.1109/TPEL.2021.3105272.

  • [94] T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, and B. Kaczer. “Gate-Sided Hydrogen Release as the Origin of "Permanent" NBTI Degradation: From Single Defects to Lifetimes”. In: 2015 IEEE International Electron Devices Meeting (IEDM). 2015, pp. 20.1.1–20.1.4. doi: 10.1109/IEDM.2015.7409739.

  • [95] T. Grasser, B. Kaczer, B. O’Sullivan, G. Rzepa, B. Stampfer, and M. Waltl. “The Mysterious Bipolar Bias Temperature Stress from the Perspective of Gate-Sided Hydrogen Release”. In: 2020 IEEE International Reliability Physics Symposium (IRPS). 2020, pp. 1–6. doi: 10.1109/IRPS45951.2020.9129198.

  • [96] N. F. Mott. “On the Transition to Metallic Conduction in Semiconductors”. In: Canadian Journal of Physics 34.12A (1956), pp. 1356–1368. doi: 10.1139/p56-151.

  • [97] A. Miller and E. Abrahams. “Impurity Conduction at Low Concentrations”. In: Phys. Rev. 120 (3 Nov. 1960), pp. 745–755. doi: 10.1103/PhysRev.120.745.

  • [98] A. Schenk, R. Enderlein, and D. Suisky. “Electroabsorption for Deep Level to Band Transitions Accompanied by Multiphonon Processes”. In: physica status solidi (b) 131.2 (1985), pp. 729–739. doi: https://doi.org/10.1002/pssb.2221310234.

  • [99] M. Herrmann and A. Schenk. “Field and High-Temperature Dependence of the Long Term Charge Loss in Erasable Programmable Read Only Memories: Measurements and Modeling”. In: Journal of applied physics 77.9 (1995), pp. 4522–4540. doi: 10.1063/1.359414.

  • [100] M. P. Houng, Y. H. Wang, and W. J. Chang. “Current Transport Mechanism in Trapped Oxides: A Generalized Trap-Assisted Tunneling Model”. In: Journal of applied physics 86.3 (1999), pp. 1488–1491. doi: 10.1063/1.370918.

  • [101] F. Jimenez-Molinos, A. Palma, F. Gamiz, J. Banqueri, and J.A. Lopez-Villanueva. “Physical Model for Trap-Assisted Inelastic Tunneling in Metal - Oxide - Semiconductor Structures”. In: Journal of Applied Physics 90.7 (2001), pp. 3396–3404. doi: 10.1063/1.1398603.

  • [102] L. Larcher. “Statistical Simulation of Leakage Currents in MOS and Flash Memory Devices with a new Multiphonon Trap-Assisted Tunneling Model”. In: IEEE Transactions on Electron Devices 50.5 (2003), pp. 1246–1253. doi: 10.1109/TED.2003.813236.

  • [103] K. A. Nasyrov, S. S. Shaimeev, V. A. Gritsenko, and J. H. Han. “Phonon-Coupled Trap-Assisted Charge Injection in Metal-Nitride-Oxide-Silicon/Silicon-Oxide-Nitride-Oxide-Silicon Structures”. In: Journal of Applied Physics 105.12 (2009), p. 123709. doi: 10.1063/1.3151711.

  • [104] L. Vandelli, A. Padovani, L. Larcher, R.G. Southwick, W. B. Knowlton, and G. Bersuker. “Modeling Temperature Dependency (6-400K) of the Leakage Current through the SiO2 /high-κ stacks”. In: 2010 Proceedings of the European Solid State Device Research Conference. IEEE. 2010, pp. 388–391. doi: 10.1109/ESSDERC.2010.5618204.

  • [105] L. Vandelli, A. Padovani, L. Larcher, RG Southwick, WB Knowlton, and G. Bersuker. “A Physical Model of the Temperature Dependence of the Current Through SiO2 / HfO2 Stacks”. In: IEEE Transactions on Electron Devices 58.9 (2011), pp. 2878–2887. doi: 10.1109/TED.2011.2158825.

  • [106] A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, and G. Bersuker. “Microscopic Modeling of HfOx RRAM Operations: From Forming to Switching”. In: IEEE Transactions on Electron Devices 62.6 (2015), pp. 1998–2006. doi: 10.1109/TED.2015.2418114.

  • [107] A. Padovani, B. Kaczer, M. Pesic, A. Belmonte, M. Popovici, L. Nyns, D. Linten, V. V. Afanasev, I. Shlyakhov, Y. Lee, et al. “A Sensitivity Map-Based Approach to Profile Defects in MIM Capacitors From I-V, C-V, and G-V Measurements”. In: IEEE Transactions on Electron Devices 66.4 (2019), pp. 1892–1898. doi: 10.1109/TED.2019.2900030.

  • [108] M. Zhang, Z. Huo, Z. Yu, J. Liu, and M. Liu. “Unification of Three Multiphonon Trap-Assisted Tunneling Mechanisms”. In: Journal of Applied Physics 110.11 (2011), p. 114108. doi: 10.1063/1.3662195.

  • [109] M. Mohammed. “Quantum-Mechanical Modeling Towards Trap-Assisted Tunneling in Semiconductor Devices”. eng. PhD thesis. KU Leuven, 2018. url: https://lirias.kuleuven.be/retrieve/515662.

  • [110] M. E. Turiansky, A. Alkauskas, M. E., G. Kresse, D. Wickramaratne, J.-X. Shen, C. E. Dreyer, and C. G. Van de Walle. “Nonrad: Computing Nonradiative Capture Coefficients from First Principles”. In: Computer Physics Communications 267 (2021), p. 108056. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2021.108056.

  • [111] J. Michl, A. Grill, D. Waldhoer, W. Goes, B. Kaczer, D. Linten, B. Parvais, B. Govoreanu, I. Radu, M. Waltl, and T. Grasser. “Efficient Modeling of Charge Trapping at Cryogenic Temperatures—Part I: Theory”. In: IEEE Transactions on Electron Devices 68.12 (2021), pp. 6365–6371. doi: 10.1109/TED.2021.3116931.

  • [112] M. Sometani, D. Okamoto, S. Harada, H. Ishimori, S. Takasu, T. Hatakeyama, M. Takei, Y. Yonezawa, K. Fukuda, and H. Okumura. “Temperature-Dependent Analysis of Conduction Mechanism of Leakage Current in Thermally Grown Oxide on 4H-SiC”. In: Journal of Applied Physics 117.2 (2015), p. 024505. doi: 10.1063/1.4905916.

  • [113] P. Fiorenza, A. La Magna, M. Vivona, and F. Roccaforte. “Near Interface Traps in SiO2 /4H-SiC Metal-Oxide-Semiconductor Field Effect Transistors Monitored by Temperature Dependent Gate Current Transient Measurements”. In: Applied Physics Letters 109.1 (2016), p. 012102. doi: 10.1063/1.4955465.

  • [114] P. Fiorenza, M. Vivona, F. Iucolano, A. Severino, S. Lorenti, G. Nicotra, C. Bongiorno, F. Giannazzo, and F. Roccaforte. “Temperature-Dependent Fowler-Nordheim Electron Barrier Height in SiO2 /4H-SiC MOS Capacitors”. In: Materials Science in Semiconductor Processing 78 (2018), pp. 38–42. issn: 1369-8001. doi: https://doi.org/10.1016/j.mssp.2017.11.024.

  • [115] Z. Chbili, A. Matsuda, J. Chbili, J. T. Ryan, J. P Campbell, M. Lahbabi, D. E. Ioannou, and K. P. Cheung. “Modeling Early Breakdown Failures of Gate Oxide in SiC Power MOSFETs”. In: IEEE Transactions on Electron Devices 63.9 (2016), pp. 3605–3613. doi: 10.1109/TED.2016.2586483.

  • [116] P. Moens, J. Franchi, J. Lettens, L. D. Schepper, M. Domeij, and F. Allerstam. “A Charge-to-Breakdown (QBD) Approach to SiC Gate Oxide Lifetime Extraction and Modeling”. In: 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2020, pp. 78–81. doi: 10.1109/ISPSD46842.2020.9170097.

  • [117] D. K. Ferry. “Electron Transport and Breakdown in SiO2 ”. In: Journal of Applied Physics 50.3 (1979), pp. 1422–1427. doi: 10.1063/1.326125.

  • [118] J. Maserjian and N. Zamani. “Behavior of the Si/SiO2 Interface observed by Fowler-Nordheim Tunneling”. In: Journal of Applied Physics 53.1 (1982), pp. 559–567. doi: 10.1063/1.329919.

  • [119] R. Rofan and C. Hu. “Stress-Induced Oxide Leakage”. In: IEEE Electron Device Letters 12.11 (1991), pp. 632–634. doi: 10.1109/55.119221.

  • [120] P. Olivo, T.N. Nguyen, and B. Ricco. “High-Field-Induced Degradation in Ultra-Thin SiO2 Films”. In: IEEE Transactions on Electron Devices 35.12 (1988), pp. 2259–2267. doi: 10.1109/16.8801.

  • [121] S. Takagi, N. Yasuda, and A. Toriumi. “Experimental Evidence of Inelastic Tunneling in Stress-Induced Leakage Current”. In: IEEE Transactions on Electron Devices 46.2 (1999), pp. 335–341. doi: 10.1109/16.740899.

  • [122] D. Ielmini, A. S. Spinelli, A. L. Lacaita, and A. Modelli. “Modeling of Anomalous SILC in Flash Memories based on Tunneling at Multiple Defects”. In: Solid-State Electronics 46.11 (2002), pp. 1749–1756. issn: 0038-1101. doi: 10.1016/S0038-1101(02)00144-2.

  • [123] C. M. Osburn and N. J. Chou. “Accelerated Dielectric Breakdown of Silicon Dioxide Films”. In: Journal of The Electrochemical Society 120.10 (1973), p. 1377. doi: 10.1149/1.2403266.

  • [124] A. Ghetti, M. Alam, J. Bude, D. Monroe, E. Sangiorgi, and H. Vaidya. “Stress Induced Leakage Current Analysis via Quantum Yield Experiments”. In: IEEE Transactions on Electron Devices 47.7 (2000), pp. 1341–1348. doi: 10.1109/16.848275.

  • [125] A. Ghetti. “Gate Oxide Reliability: Physical and Computational Models”. In: Predictive Simulation of Semiconductor Processing. Springer, 2004, pp. 201–258. doi: 10.1007/978-3-662-09432-7_6.

  • [126] W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, and T. Grasser. “Advanced Modeling of Charge Trapping: RTN, 1/f Noise, SILC, and BTI”. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2014, pp. 77–80. doi: 10.1109/SISPAD.2014.6931567.

  • [127] M. Jech, G. Rott, H. Reisinger, S. Tyaginov, G. Rzepa, A. Grill, D. Jabs, C. Jungemann, M. Waltl, and T. Grasser. “Mixed Hot-Carrier/Bias Temperature Instability Degradation Regimes in Full VG , VD Bias Space: Implications and Peculiarities”. In: IEEE Transactions on Electron Devices 67.8 (2020), pp. 3315–3322. doi: 10.1109/TED.2020.3000749.

  • [128] Markus Jech. “The Physics of Non-Equilibrium Reliability Phenomena”. PhD thesis. TU Wien, 2020.

  • [129] E. Bano, C. Banc, T. Ouisse, and S. Scharnholz. “Hot carrier-induced photon emission in 6H and 4H–SiC MOSFETs”. In: Solid-State Electronics 44.1 (2000), pp. 63–69. issn: 0038-1101. doi: https://doi.org/10.1016/S0038-1101(99)00202-6.

  • [130] G. Pobegen, T. Aichinger, A. Salinaro, and T. Grasser. “Impact of Hot Carrier Degradation and Positive Bias Temperature Stress on Lateral 4H-SiC nMOSFETs”. In: Silicon Carbide and Related Materials 2013. Vol. 778. Materials Science Forum. Trans Tech Publications Ltd, May 2014, pp. 959–962. doi: 10.4028/www.scientific.net/MSF.778-780.959.

  • [131] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan. “Identification of the Atomic-Scale Defects Involved in the Negative Bias Temperature Instability in Plasma-Nitrided p-Channel Metal-Oxide-Silicon Field-Effect Transistors”. In: Journal of Applied Physics 103.4 (2008), p. 044505. doi: 10.1063/1.2844348.

  • [132] G. Gruber, P. Hadley, M. Koch, and T. Aichinger. “Electrically Detected Magnetic Resonance Study of Defects created by Hot Carrier Stress at the SiC/SiO2 Interface of a SiC n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor”. In: Applied Physics Letters 105.4 (2014), p. 043506. doi: 10.1063/1.4891847.

  • [133] M. A. Anders, P. M. Lenahan, and A. J. Lelis. “Are Dangling Bond Centers Important Interface Traps in 4H-SiC Metal Oxide Semiconductor Field Effect Transistors?” In: Applied Physics Letters 109.14 (2016), p. 142106. doi: 10.1063/1.4963708.

  • [134] B. Stampfer, A. Grill, and M. Waltl. “Advanced Electrical Characterization of Single Oxide Defects utilizing Noise Signals”. In: Noise in Nanoscale Semiconductor Devices (2020), p. 229. doi: 10.1007/978-3-030-37500-3_7.

  • [135] A.T. Dejenfelt and O. Engström. “MOSFET Mobility Degradation due to Interface-States, generated by Fowler-Nordheim Electron Injection.” In: Microelectronic Engineering 15.1 (1991), pp. 461–464. issn: 0167-9317. doi: https://doi.org/10.1016/0167-9317(91)90265-F.

  • [136] A. Ortiz-Conde, F.J. Garcia Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue. “A Review of recent MOSFET Threshold Voltage Extraction Methods”. In: Microelectronics Reliability 42.4 (2002), pp. 583–596. issn: 0026-2714. doi: https://doi.org/10.1016/S0026-2714(02)00027-6.

  • [137] K. Terada, K. Nishiyama, and K.-I. Hatanaka. “Comparison of MOSFET-Threshold-Voltage Extraction Methods”. In: Solid-State Electronics 45.1 (2001), pp. 35–40. issn: 0038-1101. doi: https://doi.org/10.1016/S0038-1101(00)00187-8.

  • [138] S.C. Sun and J. D. Plummer. “Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces”. In: IEEE Journal of solid-state circuits 15.4 (1980), pp. 562–573. doi: 10.1109/JSSC.1980.1051439.

  • [139] K. Aoyama. “A Method for Extracting the Threshold Voltage of MOSFETs based on Current Components”. In: Simulation of Semiconductor Devices and Processes. Springer, 1995, pp. 118–121. doi: 10.1007/978-3-7091-6619-2_28.

  • [140] T. Knobloch, G. Rzepa, Y. Y. Illarionov, M. Waltl, F. Schanovsky, B. Stampfer, M. M. Furchi, T. Mueller, and T. Grasser. “A Physical Model for the Hysteresis in MoS2 Transistors”. In: IEEE Journal of the Electron Devices Society 6 (2018), pp. 972–978. doi: 10.1109/JEDS.2018.2829933.

  • [141] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “On the Subthreshold Drain Current Sweep Hysteresis of 4H-SiC nMOSFETs”. In: 2016 IEEE International Electron Devices Meeting (IEDM). 2016, pp. 10.8.1–10.8.4. doi: 10.1109/IEDM.2016.7838392.

  • [142] A.S. Grove and D.J. Fitzgerald. “Surface Effects on p-n Junctions: Characteristics of Surface Space-Charge Regions under Non-Equilibrium Conditions”. In: Solid-State Electronics 9.8 (1966), pp. 783–806. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(66)90118-3.

  • [143] Dieter K. Schroder. Semiconductor Material and Device Characterization. John Wiley & Sons, 2015. doi: 10.1002/0471749095.

  • [144] B. Kaczer, T. Grasser, J. Roussel, J. Martin-Martinez, R. O Connor, B. J. O Sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing - New Evaluation and Insights”. In: 2008 IEEE IRPS. 2008, pp. 20–27. doi: 10.1109/RELPHY.2008.4558858.

  • [145] A. Kerber, S. A. Krishnan, and E. A. Cartier. “Voltage Ramp Stress for Bias Temperature Instability Testing of Metal-Gate/High-k Stacks”. In: IEEE Electron Device Letters 30.12 (2009), pp. 1347–1349. doi: 10.1109/LED.2009.2032790.

  • [146] Z. Wu, J. Franco, D. Claes, G. Rzepa, P. J. Roussel, N. Collaert, G. Groeseneken, D. Linten, T. Grasser, and B. Kaczer. “Accelerated Capture and Emission (ACE) Measurement Pattern for Efficient BTI Characterization and Modeling”. In: 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE. 2019, pp. 1–7. doi: 10.1109/IRPS.2019.8720541.

  • [147] H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, and C. Schlunder. “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT-Measurements”. In: 2006 IEEE IRPS Proceedings. 2006, pp. 448–453. doi: 10.1109/RELPHY.2006.251260.

  • [148] M. Denais, C. Parthasarathy, G. Ribes, Y. Rey-Tauriac, N. Revil, A. Bravaix, V. Huard, and F. Perrier. “On-the-Fly Characterization of NBTI in Ultra-Thin Gate Oxide pMOSFETs”. In: IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004.. 2004, pp. 109–112. doi: 10.1109/IEDM.2004.1419080.

  • [149] T. Grasser, P.-J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer. “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 526–535. doi: 10.1109/TDMR.2008.2002353.

  • [150] M. Sometani, D. Okamoto, S. Harada, H. Ishimori, S. Takasu, T. Hatakeyama, M. Takei, Y. Yonezawa, K. Fukuda, and H. Okumura. “Threshold-Voltage Instability in 4H-SiC MOSFETs with Nitrided Gate Oxide Revealed by Non-Relaxation Method”. In: Japanese Journal of Applied Physics 55.4S (Mar. 2016), 04ER11. doi: 10.7567/jjap.55.04er11.

  • [151] D. Okamoto, M. Sometani, H. Hirai, M. Okamoto, and T. Hatakeyama. “Negative Bias Temperature Instability in 4H-SiC MOSFETs Investigated by On-the-fly Methods”. In: 2021 IEEE International Meeting for Future Electron Devices, Kansai (IMFEDK). 2021, pp. 1–4. doi: 10.1109/IMFEDK53601.2021.9637600.

  • [152] B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger. “Origin of NBTI variability in deeply scaled pFETs”. In: 2010 IEEE International Reliability Physics Symposium. 2010, pp. 26–32. doi: 10.1109/IRPS.2010.5488856.

  • [153] T. Grasser, K. Rott, H. Reisinger, M. Waltl, F. Schanovsky, and B. Kaczer. “NBTI in Nanoscale MOSFETs—The Ultimate Modeling Benchmark”. In: IEEE Transactions on Electron Devices 61.11 (2014), pp. 3586–3593. doi: 10.1109/TED.2014.2353578.

  • [154] D. T. Clark, E. P. Ramsay, A.E. Murphy, D. A. Smith, R. F. Thompson, R.A.R. Young, J. D. Cormack, C. Zhu, S. Finney, and J. Fletcher. “High Temperature Silicon Carbide CMOS Integrated Circuits”. In: Silicon Carbide and Related Materials 2010. Vol. 679. Materials Science Forum. Trans Tech Publications Ltd, Apr. 2011, pp. 726–729. doi: 10.4028/www.scientific.net/MSF.679-680.726.

  • [155] B. A. Hull, S.-H. Ryu, H. Fatima, J. Richmond, J. W. Palmour, and J. Scofield. “Development of a 4H-SiC CMOS Inverter”. In: MRS Proceedings 911 (2006), 0911–B13–02. doi: 10.1557/PROC-0911-B13-02.

  • [156] V. Soler, M. Cabello, V. Banu, J. Montserrat, J. Rebollo, and P. Godignon. “Complementary p-Channel and n-Channel SiC MOSFETs for CMOS Integration”. In: Silicon Carbide and Related Materials 2017. Vol. 924. Materials Science Forum. Trans Tech Publications Ltd, July 2018, pp. 975–979. doi: 10.4028/www.scientific.net/MSF.924.975.

  • [157] T. Knobloch. “Analysis of Single Electron Traps in Nano-Scaled MoS2 FETs at Cryogenic Temperatures”. In: Proc. Device Res. Conf.(DRC). 2020, pp. 52–53.

  • [158] A. Grill, B. Stampfer, K.-S. Im, J.-H. Lee, C. Ostermaier, H. Ceric, M. Waltl, and T. Grasser. “Electrostatic Coupling and Identification of Single-Defects in GaN/AlGaN Fin-MIS-HEMTs”. In: Solid-State Electronics 156 (2019), pp. 41–47. doi: https://doi.org/10.1016/j.sse.2019.02.004.

  • [159] S. L. Rumyantsev, M. S. Shur, M. E. Levinshtein, P. A. Ivanov, J. W. Palmour, A. K. Agarwal, and S. Dhar. “Si-like Low-Frequency Noise Characteristics of 4H-SiC MOSFETs”. In: Semiconductor Science and Technology 26.8 (May 2011), p. 085015. doi: 10.1088/0268-1242/26/8/085015.

  • [160] C. X. Zhang, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, and S. T. Pantelides. “Origins of Low-Frequency Noise and Interface Traps in 4H-SiC MOSFETs”. In: IEEE Electron Device Letters 34.1 (2013), pp. 117–119. doi: 10.1109/LED.2012.2228161.

  • [161] T. Grasser, W. Goes, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V.V. Afanas’ev, A. Stesmans, A.-M. El-Sayed, and A.L. Shluger. “On the Microscopic Structure of Hole Traps in pMOSFETs”. In: 2014 IEEE International Electron Devices Meeting. 2014, pp. 21.1.1–21.1.4. doi: 10.1109/IEDM.2014.7047093.

  • [162] D. Cornigli, A. N. Tallarico, S. Reggiani, C. Fiegna, E. Sangiorgi, L. Sanchez, C. Valdivieso, G. Consentino, and F. Crupi. “Characterization and Modeling of BTI in SiC MOSFETs”. In: ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC). 2019, pp. 82–85. doi: 10.1109/ESSDERC.2019.8901761.

  • [163] M. Waltl. “Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors”. In: IEEE Transactions on Device and Materials Reliability 20.2 (2020), pp. 242–250. doi: 10.1109/TDMR.2020.2988650.

  • [164] E. Zavoisky. “Spin-Magnetic Resonance in Paramagnetics”. In: J Phys Ussr 9 (1945), pp. 211–245.

  • [165] B. Bleaney and K. W. H. Stevens. “Paramagnetic Resonance”. In: Reports on Progress in Physics 16.1 (Jan. 1953), pp. 108–159. doi: 10.1088/0034-4885/16/1/304.

  • [166] D. J. Lepine. “Spin-Dependent Recombination on Silicon Surface”. In: Phys. Rev. B 6 (2 July 1972), pp. 436–441. doi: 10.1103/PhysRevB.6.436.

  • [167] D.M. Fleetwood. “Border Traps and Bias-Temperature Instabilities in MOS Devices”. In: Microelectronics Reliability 80 (2018), pp. 266–277. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2017.11.007.

  • [168] R. A. Weeks. “Paramagnetic Resonance of Lattice Defects in Irradiated Quartz”. In: Journal of Applied Physics 27.11 (1956), pp. 1376–1381. doi: 10.1063/1.1722267.

  • [169] S.T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood, and R.D. Schrimpf. “The E′ Center and Oxygen Vacancies in SiO2 ”. In: Journal of Non-Crystalline Solids 354.2 (2008). Physics of Non-Crystalline Solids 11, pp. 217–223. issn: 0022-3093. doi: https://doi.org/10.1016/j.jnoncrysol.2007.08.080.

  • [170] M. Boero, A. Pasquarello, J. Sarnthein, and R. Car. “Structure and Hyperfine Parameters of E1′ Centers in α-Quartz and in Vitreous SiO2 ”. In: Phys. Rev. Lett. 78 (5 Feb. 1997), pp. 887–890. doi: 10.1103/PhysRevLett.78.887.

  • [171] J. K. Rudra and W. B. Fowler. “Oxygen Vacancy and the E1′ Center in Crystalline SiO2 ”. In: Phys. Rev. B 35 (15 May 1987), pp. 8223–8230. doi: 10.1103/PhysRevB.35.8223.

  • [172] C. Wilhelmer, M. Jech, D. Waldhoer, A.-M. B. El-Sayed, L. Cvitkovich, and T. Grasser. “Statistical Ab Initio Analysis of Electron Trapping Oxide Defects in the Si/SiO2 Network”. In: ESSDERC 2021 - IEEE 51st European Solid-State Device Research Conference (ESSDERC). 2021, pp. 243–246. doi: 10.1109/ESSDERC53440.2021.9631833.

  • [173] D. Waldhoer, A. B. El-Sayed, Y. Wimmer, M. Waltl, and T. Grasser. “Atomistic Modeling of Oxide Defects”. In: Noise in Nanoscale Semiconductor Devices. Springer, Cham, 2020, pp. 609–648. doi: 10.1007/978-3-030-37500-3\_18.

  • [174] G. Buscarino and S. Agnello. “Experimental Evidence of E′γ Centers Generation from Oxygen Vacancies in a-SiO2 ”. In: Journal of Non-Crystalline Solids 353.5 (2007), pp. 577–580. issn: 0022-3093. doi: https://doi.org/10.1016/j.jnoncrysol.2006.12.031.

  • [175] S. Dannefaer, T. Bretagnon, and D. Kerr. “Vacancy-type Defects in Crystalline and Amorphous SiO2 ”. In: Journal of Applied Physics 74.2 (1993), pp. 884–890. doi: 10.1063/1.354882.

  • [176] D. P. Ettisserry, N. Goldsman, A. Akturk, and A. J. Lelis. “Negative Bias-and-Temperature Stress-Assisted Activation of Oxygen-Vacancy Hole Traps in 4H-Silicon Carbide Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Journal of Applied Physics 118.4 (2015), p. 044507. doi: 10.1063/1.4927619.

  • [177] A.-M. El-Sayed, M. B. Watkins, V. V. Afanas’ ev, and A. L. Shluger. “Nature of Intrinsic and Extrinsic Electron Trapping in SiO2 ”. In: Phys. Rev. B 89.12 (2014), p. 125201. doi: 10.1103/PhysRevB.89.125201.

  • [178] V.V. Afanas’ev, A. Stesmans, M. Bassler, G. Pensl, and M.J. Schulz. “Shallow Electron Traps at the 4H–SiC/SiO2 Interface”. In: Applied Physics Letters 76.3 (2000), pp. 336–338. doi: 10.1063/1.125737.

  • [179] M. Kaviani, J. Strand, V. V. Afanasev, and A. L. Shluger. “Deep Electron and Hole Polarons and Bipolarons in Amorphous Oxide”. In: Physical Review B 94.2 (2016), p. 020103. doi: 10.1103/PhysRevB.94.020103.

  • [180] F. Devynck, F. Giustino, P. Broqvist, and A. Pasquarello. “Structural and Electronic Properties of an Abrupt 4H-SiC (0001) / SiO2 Interface Model: Classical Molecular Dynamics Simulations and Density Functional Calculations”. In: Phys. Rev. B 76 (7 Aug. 2007), p. 075351. doi: 10.1103/PhysRevB.76.075351.

  • [181] P. Fiorenza, C. Bongiorno, F. Giannazzo, M.S. Alessandrino, A. Messina, M. Saggio, and F. Roccaforte. “Interfacial Electrical and Chemical Properties of Deposited SiO2 Layers in Lateral Implanted 4H-SiC MOSFETs Subjected to Different Nitridations”. In: Applied Surface Science 557 (2021), p. 149752. issn: 0169-4332. doi: https://doi.org/10.1016/j.apsusc.2021.149752.

  • [182] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz. “Intrinsic SiC/SiO2 Interface States”. In: physica status solidi (a) 162.1 (1997), pp. 321–337. doi: https://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F.

  • [183] K.C. Chang, N.T. Nuhfer, L.M. Porter, and Q. Wahab. “High-Carbon Concentrations at the Silicon Dioxide–Silicon Carbide Interface Identified by Electron Energy Loss Spectroscopy”. In: Applied Physics Letters 77.14 (2000), pp. 2186–2188. doi: 10.1063/1.1314293.

  • [184] P. Deak, J.M. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim. “The Mechanism of Defect Creation and Passivation at the SiC / SiO2 Interface”. In: Journal of Physics D: Applied Physics 40.20 (Oct. 2007), pp. 6242–6253. doi: 10.1088/0022-3727/40/20/s09.

  • [185] J.M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke. “Defects in SiO2 as the Possible Origin of Near Interface Traps in the SiC/SiO2 System: A Systematic Theoretical Study”. In: Phys. Rev. B 72 (11 Sept. 2005), p. 115323. doi: 10.1103/PhysRevB.72.115323.

  • [186] F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello. “Charge Transition Levels of Carbon-, Oxygen-, and Hydrogen-Related Defects at the SiC/SiO2 Interface Through Hybrid Functionals”. In: Phys. Rev. B 84.23 (2011), p. 235320. doi: 10.1103/PhysRevB.84.235320.

  • [187] G. Gruber, J. Cottom, R. Meszaros, M. Koch, G. Pobegen, T. Aichinger, D. Peters, and P. Hadley. “Electrically Detected Magnetic Resonance of Carbon Dangling Bonds at the Si-Face 4H-SiC/SiO2 Interface”. In: Journal of Applied Physics 123.16 (2018), p. 161514. doi: 10.1063/1.4985856.

  • [188] J. Cottom, G. Gruber, G. Pobegen, T. Aichinger, and A. L. Shluger. “Recombination Defects at the 4H-SiC/SiO2 Interface Investigated with Electrically Detected Magnetic Resonance and ab initio Calculations”. In: Journal of Applied Physics 124.4 (2018). doi: 10.1063/1.5024608.

  • [189] T. Umeda, T. Kobayashi, M. Sometani, H. Yano, Y. Matsushita, and S. Harada. “Carbon Dangling-Bond Center (Carbon Pb Center) at 4H-SiC (0001)/SiO2 Interface”. In: Applied Physics Letters 116.7 (2020), p. 071604. doi: 10.1063/1.5143555.

  • [190] J. Woerle, B.C. Johnson, C. Bongiorno, K. Yamasue, G. Ferro, D. Dutta, T.A. Jung, H. Sigg, Y. Cho, U. Grossner, and M. Camarda. “Two-Dimensional Defect Mapping of the SiO2 /4H-SiC Interface”. In: Phys. Rev. Materials 3 (8 Aug. 2019), p. 084602. doi: 10.1103/PhysRevMaterials.3.084602.

  • [191] J. Cottom, M.V. Mistry, G. Gruber, G. Pobegen, T. Aichinger, and A.L. Shluger. “Evidence for an Abrupt Transition between SiO2 and SiC from EELS and Ab Initio Modelling”. In: Silicon Carbide and Related Materials 2018. Vol. 963. Materials Science Forum. Trans Tech Publications Ltd, Sept. 2019, pp. 199–203. doi: 10.4028/www.scientific.net/MSF.963.199.

  • [192] E. Fisslthaler, G. Haberfehlner, C. Gspan, G. Gruber, and W. Grogger. “High-Resolution Cross-Sectional Analysis of the Interface between SiC and SiO2 in a MOSFET Device via Atomic Resolution STEM”. In: Microelectronics Reliability 100-101 (2019). 30th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, p. 113366. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2019.06.058.

  • [193] Gerald Rescher. “Behavior of SiC-MOSFETs under Temperature and Voltage Stress”. PhD thesis. TU Wien, 2018. url: http://www.iue.tuwien.ac.at/phd/rescher/.

  • [194] D. L. Griscom. “Diffusion of Radiolytic Molecular Hydrogen as a Mechanism for the Post-Irradiation Buildup of Interface States in SiO2 -on-Si Structures”. In: Journal of Applied Physics 58.7 (1985), pp. 2524–2533. doi: 10.1063/1.335931.

  • [195] A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V. V. Afanas’ev, and A. L. Shluger. “Theoretical Models of Hydrogen-Induced Defects in Amorphous Silicon Dioxide”. In: Phys. Rev. B 92 (1 July 2015), p. 014107. doi: 10.1103/PhysRevB.92.014107.

  • [196] H. Yoshioka, T. Nakamura, and T. Kimoto. “Generation of very fast States by Nitridation of the SiO2 /SiC Interface”. In: Journal of Applied Physics 112.2 (2012), p. 024520. doi: 10.1063/1.4740068.

  • [197] J. Cottom, G. Gruber, P. Hadley, M. Koch, G. Pobegen, T. Aichinger, and A. Shluger. “Recombination Centers in 4H-SiC Investigated by Electrically Detected Magnetic Resonance and ab Initio Modeling”. In: 119.18 (2016). issn: 10897550. doi: 10.1063/1.4948242.

  • [198] S. Wang, S. Dhar, S.-R. Wang, A. C. Ahyi, A. Franceschetti, J. R. Williams, L. C. Feldman, and S. T. Pantelides. “Bonding at the SiC-SiO2 Interface and the Effects of Nitrogen and Hydrogen”. In: Phys. Rev. Lett. 98 (2 Jan. 2007), p. 026101. doi: 10.1103/PhysRevLett.98.026101.

  • [199] J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanasev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams, and L. C. Feldman. “Increase in Oxide Hole Trap Density Associated with Nitrogen Incorporation at the SiO2 /SiC Interface”. In: Journal of Applied Physics 103.12 (2008), p. 124513. doi: 10.1063/1.2940736.

  • [200] M. V. Mistry. “Modelling the Mechanisms of Nitridation of SiC based Devices during Anneals in NH3 and NO gases”. PhD thesis. UCL (University College London, 2021.

  • [201] E. Higa, M. Sometani, H. Hirai, H. Yano, S. Harada, and T. Umeda. “Electrically Detected Magnetic Resonance Study on Interface Defects at Nitrided Si-face, a-face, and m-face 4H-SiC/SiO2 Interfaces”. In: Applied Physics Letters 116.17 (2020). doi: 10.1063/5.0002944.

  • [202] P. M. Lenahan, J. P. Campbell, A. T. Krishnan, and S. Krishnan. “A Model for NBTI in Nitrided Oxide MOSFETs Which Does Not Involve Hydrogen or Diffusion”. In: IEEE Transactions on Device and Materials Reliability 11.2 (2011), pp. 219–226. doi: 10.1109/TDMR.2010.2063031.

  • [203] G. Rzepa. “Efficient Physical Modeling of Bias Temperature Instability”. PhD thesis. TU Wien, 2018. url: http://www.iue.tuwien.ac.at/phd/rzepa/.

  • [204] D. T. Gillespie. “A Rigorous Derivation of the Chemical Master Equation”. In: Physica A: Statistical Mechanics and its Applications 188.1 (1992), pp. 404–425. issn: 0378-4371. doi: https://doi.org/10.1016/0378-4371(92)90283-V.

  • [205] C. Timm. “Random Transition-Rate Matrices for the Master Equation”. In: Phys. Rev. E 80 (2 Aug. 2009), p. 021140. doi: 10.1103/PhysRevE.80.021140.

  • [206] R. N. Hall. “Electron-Hole Recombination in Germanium”. In: Phys. Rev. 87 (2 July 1952), pp. 387–387. doi: 10.1103/PhysRev.87.387.

  • [207] T. Kikuchi and M. Ciappa. “A New Two-Dimensional TCAD Model for Threshold Instability in Silicon Carbide MOSFETs”. In: Microelectronics Reliability 53.9 (2013). European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, pp. 1730–1734. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2013.07.031.

  • [208] B. Ruch, M. Jech, G. Pobegen, and T. Grasser. “Applicability of Shockley-Read-Hall Theory for Interface States”. In: IEEE Transactions on Electron Devices 68.4 (2021). doi: 10.1109/TED.2021.3049760.

  • [209] K. Huang, A. Rhys, and N. F. Mott. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 204.1078 (1950), pp. 406–423. doi: 10.1098/rspa.1950.0184.

  • [210] Dominic Waldhoer. “Potential Energy Surface Approximations for Nonradiative Multiphonon Charge Transitions in Oxide Defects”. MA thesis. Wien: TU Wien, 2018.

  • [211] Comphy. 2021. url: http://comphy.eu/ (visited on 08/01/2021).

  • [212] C. Schleich, D. Waldhoer, K. Waschneck, M. W. Feil, H. Reisinger, T. Grasser, and M. Waltl. “Physical Modeling of Charge Trapping in 4H-SiC DMOSFET Technologies”. In: IEEE Transactions on Electron Devices 68.8 (2021), pp. 4016–4021. doi: 10.1109/TED.2021.3092295.

  • [213] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: https://doi.org/10.1002/andp.19273892002.

  • [214] P. A. M. Dirac and N. H. D. Bohr. “The Quantum Theory of the Emission and Absorption of Radiation”. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 114.767 (1927), pp. 243–265. doi: 10.1098/rspa.1927.0039.

  • [215] J. Franck and E. G. Dymond. “Elementary Processes of Photochemical Reactions”. In: Trans. Faraday Soc. 21 (February 1926), pp. 536–542. doi: 10.1039/TF9262100536.

  • [216] E. U. Condon. “Nuclear Motions Associated with Electron Transitions in Diatomic Molecules”. In: Phys. Rev. 32 (6 Dec. 1928), pp. 858–872. doi: 10.1103/PhysRev.32.858.

  • [217] D. Waldhoer, Y. Wimmer, A. M. El-Sayed, W. Goes, M. Waltl, and T. Grasser. “Minimum Energy Paths for Non-Adiabatic Charge Transitions in Oxide Defects”. In: 2019 IEEE International Integrated Reliability Workshop (IIRW). 2019, pp. 1–5. doi: 10.1109/IIRW47491.2019.8989889.

  • [218] W. Nolting. Quantenmechanik-Methoden und Anwendungen. 6., überarb. Aufl. Berlin; Heidelberg [ua]. 2006.

  • [219] W. Zhou, C. Zimmermann, and C. Jungemann. “Master Equation Study of Excitonic Processes Limiting the Luminous Efficacy in Phosphorescent Organic Light-Emitting Diodes”. In: Journal of Applied Physics 125.16 (2019), p. 165501. doi: 10.1063/1.5082164.

  • [220] K. P. McKenna and J. Blumberger. “First Principles Modeling of Electron Tunneling between Defects in m-HfO2 ”. In: Microelectronic Engineering 147 (2015), pp. 235–238. doi: 10.1016/j.mee.2015.04.009.

  • [221] J. Blumberger and K. P. McKenna. “Constrained Density Functional Theory Applied to Electron Tunnelling between Defects in MgO”. In: Physical Chemistry Chemical Physics 15.6 (2013), pp. 2184–2196. doi: 10.1039/C2CP42537H.

  • [222] K. P. McKenna, M. J. Wolf, A. L. Shluger, S. Lany, and A. Zunger. “Two-Dimensional Polaronic Behavior in the Binary Oxides m-HfO2 and m-ZrO2 ”. In: Phys. Rev. Lett. 108 (11 Mar. 2012), p. 116403. doi: 10.1103/PhysRevLett.108.116403.

  • [223] C. S. Kelley. “Moments of Semiclassical and Classical Absorption and Emission Band Shapes of Impurities in Solids”. In: Phys. Rev. B 20 (12 Dec. 1979), pp. 5084–5089. doi: 10.1103/PhysRevB.20.5084.

  • [224] A. Alkauskas, Q. Yan, and C. G. Van de Walle. “First-Principles Theory of Nonradiative Carrier Capture via Multiphonon Emission”. In: Phys. Rev. B 90 (7 Aug. 2014), p. 075202. doi: 10.1103/PhysRevB.90.075202.

  • [225] C. Jungemann and C. Zimmermann. “DC, AC and Noise Simulation of Organic Semiconductor Devices Based on the Master Equation”. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE. 2014, pp. 137–140. doi: 10.1109/SISPAD.2014.6931582.

  • [226] P. D. Yoder, K. Gärtner, and W. Fichtner. “A generalized Ramo–Shockley Theorem for Classical to Quantum Transport at Arbitrary Frequencies”. In: Journal of Applied Physics 79.4 (1996), pp. 1951–1954. doi: 10.1063/1.361074.

  • [227] R. Tsu and L. Esaki. “Tunneling in a Finite Superlattice”. In: Applied Physics Letters 22.11 (1973), pp. 562–564. doi: 10.1063/1.1654509.

  • [228] A. Gehring and S. Selberherr. “Modeling of Tunneling Current and Gate Dielectric Reliability for Nonvolatile Memory Devices”. In: IEEE Transactions on Device and Materials Reliability 4.3 (2004), pp. 306–319. doi: 10.1109/TDMR.2004.836727.

  • [229] R. H. Fowler and L. Nordheim. “Electron Emission in Intense Electric Fields”. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119.781 (1928), pp. 173–181. doi: 10.1098/rspa.1928.0091.

  • [230] W. R. Frensley. “Boundary Conditions for Open Quantum Systems Driven far from Equilibrium”. In: Rev. Mod. Phys. 62 (3 July 1990), pp. 745–791. doi: 10.1103/RevModPhys.62.745.

  • [231] H. Kim, H.S. Min, T.W. Tang, and Y.J. Park. “An Extended Proof of the Ramo-Shockley Theorem”. In: Solid-State Electronics 34.11 (1991), pp. 1251–1253. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(91)90065-7.

  • [232] Global TCAD Solutions. Minimos-NT. 2021. url: http://www.globaltcad.com/minimos-nt. (visited on 05/30/2022).

  • [233] Synopsys Inc.. Medici User Guide. 2007. url: https://www.synopsys.com/silicon/tcad/device-simulation.html (visited on 05/30/2022).

  • [234] Silvaco Inc.. Victory Device. 2022. url: https://silvaco.com/tcad/victory-device-3d/ (visited on 05/30/2022).

  • [235] G. Rzepa, J. Franco, B. O Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P.J. Roussel, D. Linten, B. Kaczer, and T. Grasser. “Comphy - A Compact-Physics Framework for Unified Modeling of BTI”. In: Microelectronics Reliability 85 (2018), pp. 49–65. doi: https://doi.org/10.1016/j.microrel.2018.04.002.

  • [236] W. B. Joyce and R. W. Dixon. “Analytic Approximations for the Fermi Energy of an Ideal Fermi Gas”. In: Applied Physics Letters 31.5 (1977), pp. 354–356. doi: 10.1063/1.89697.

  • [237] O. Roux dit Buisson, G. Ghibaudo, and J. Brini. “Model for Drain Current RTS Amplitude in Small-Area MOS Transistors”. In: Solid-State Electronics 35.9 (1992), pp. 1273–1276. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(92)90161-5.

  • [238] K. Giering, C. Sohrmann, G. Rzepa, L. Heiss, T. Grasser, and R. Jancke. “NBTI Modeling in Analog Circuits and its Application to Long-Term Aging Simulations”. In: 2014 IEEE International Integrated Reliability Workshop (IIRW). 2014, pp. 29–34. doi: 10.1109/IIRW.2014.7049501.

  • [239] S. E. Rauch. “Review and Reexamination of Reliability Effects Related to NBTI-Induced Statistical Variations”. In: IEEE Transactions on Device and Materials Reliability 7.4 (2007), pp. 524–530. doi: 10.1109/TDMR.2007.910437.

  • [240] G. Jegert, A. Kersch, W. Weinreich, and P. Lugli. “Monte Carlo Simulation of Leakage Currents in TiN/ZrO2 /TiN Capacitors”. In: IEEE Transactions on Electron Devices 58.2 (2011), pp. 327–334. doi: 10.1109/TED.2010.2090158.

  • [241] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill Higher Education New York, 2008. isbn: 9780073523408.

  • [242] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numerische Mathematik 1.1 (1959), pp. 269–271. doi: 10.1007/bf01386390.

  • [243] J. Robertson. “High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors”. In: Reports on progress in Physics 69.2 (2005), p. 327. doi: 10.1088/0034-4885/69/2/R02.

  • [244] A. A. Istratov and O. F. Vyvenko. “Exponential Analysis in Physical Phenomena”. In: Review of Scientific Instruments 70.2 (1999), pp. 1233–1257. doi: 10.1063/1.1149581.

  • [245] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The Computer Journal 7.4 (Jan. 1965), pp. 308–313. issn: 0010-4620. doi: 10.1093/comjnl/7.4.308.

  • [246] A. N. Tikhonov. “Numerical Methods for the Solution of Ill-Posed Problems”. In: (1995). doi: 10.1007/978-94-015-8480-7.

  • [247] Ho-Young Cha and Peter M. Sandvik. “Electrical and Optical Modeling of 4H-SiC Avalanche Photodiodes”. In: Japanese Journal of Applied Physics 47.7 (July 2008), pp. 5423–5425. doi: 10.1143/jjap.47.5423.

  • [248] C. Raynaud, D. Tournier, H. Morel, and D. Planson. “Comparison of High Voltage and High Temperature Performances of Wide Bandgap Semiconductors for Vertical Power Devices”. In: Diamond and Related Materials 19.1 (2010), pp. 1–6. issn: 0925-9635. doi: https://doi.org/10.1016/j.diamond.2009.09.015.

  • [249] N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzen, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer. “Electron Effective Masses in 4H SiC”. In: Applied Physics Letters 66.9 (1995), pp. 1074–1076. doi: 10.1063/1.113576.

  • [250] R. Kumar Chanana. “Determination of Hole Effective Mass in SiO2 and SiC Conduction Band Offset using Fowler–Nordheim Tunneling Characteristics across Metal-Oxide-Semiconductor Structures after applying Oxide Field Corrections”. In: Journal of Applied Physics 109.10 (2011), p. 104508. doi: 10.1063/1.3587185.

  • [251] L. Yang, Y. Bai, C. Li, H. Chen, Y. Tang, J. Hao, C. Yang, X. Tian, J. Lu, and X. Liu. “Bias Temperature Instability of 4H-SiC p- and n-Channel MOSFETs Induced by Negative Stress at 200 °C”. In: IEEE Transactions on Electron Devices (2022), pp. 1–5. doi: 10.1109/TED.2022.3166126.

  • [252] R. Nakamura, Y. Nakano, M. Aketa, K. Noriaki, and K. Ino. “1200V 4H-SiC Trench Devices”. In: PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2014, pp. 1–7.

  • [253] D. Peters, R. Siemieniec, T. Aichinger, T. Basler, R. Esteve, W. Bergner, and D. Kueck. “Performance and Ruggedness of 1200V SiC — Trench — MOSFET”. In: 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD). 2017, pp. 239–242. doi: 10.23919/ISPSD.2017.7988904.

  • [254] A. Alkauskas, P. Broqvist, F. Devynck, and A. Pasquarello. “Band Offsets at Semiconductor-Oxide Interfaces from Hybrid Density-Functional Calculations”. In: Phys. Rev. Lett. 101 (10 Sept. 2008), p. 106802. doi: 10.1103/PhysRevLett.101.106802.

  • [255] R. Green, A. Lelis, and D. Habersat. “Threshold-Voltage Bias-Temperature Instability in Commercially-Available SiC MOSFETs”. In: Jap. Journal of Appl. Phy. 55.4S (2016). doi: 10.7567/jjap.55.04ea03.

  • [256] Silicon Carbide Power MOSFET C2M TM MOSFET Technology - Datasheet. C2M0280120D. Rev. B. Cree Inc. Oct. 2015.

  • [257] Silicon Carbide Power MOSFET C3M TM MOSFET Technology - Datasheet. C3M0065090J. Rev. 06-2015. Cree Inc. June 2015.

  • [258] STMicroelectronics SCT30N120 - Datasheet. SCT30N120. Rev. 11. ST Microelectronics. May 2017.

  • [259] K. Ito, T. Kobayashi, and T. Kimoto. “Effect of Quantum Confinement on the Defect-Induced Localized Levels in 4H-SiC (0001)/SiO2 Systems”. In: Journal of Applied Physics 128.9 (2020), p. 095702. doi: https://doi.org/10.1063/5.0013240.

  • [260] I. Lundström and C. Svensson. “Tunneling to Traps in Insulators”. In: Journal of Applied Physics 43.12 (1972), pp. 5045–5047. doi: 10.1063/1.1661067.

  • [261] K. A. Waschneck. “Modeling Bias Temperature Instability in Si and SiC MOSFETs Using Activation Energy Maps”. PhD thesis. Wien, 2020.

  • [262] J. Rice and J. Mookken. “SiC MOSFET Gate Drive Design Considerations”. In: 2015 IEEE International Workshop on Integrated Power Packaging (IWIPP). 2015, pp. 24–27. doi: 10.1109/IWIPP.2015.7295969.

  • [263] A. K. Ghosh, J. Hao, M. Cook, S. A. Suliman, X. Wang, and O. O. Awadelkarim. “Threshold-Voltage Bias-Instability in SiC MOSFETs: Effects of Stress Temperature and Level on Oxide Charge Buildup and Recovery”. In: Semiconductor Science and Technology (2022). doi: 10.1088/1361-6641/ac606c.

  • [264] G. Carangelo, S. Reggiani, G. Consentino, F. Crupi, and G. Meneghesso. “TCAD Modeling of Bias Temperature Instabilities in SiC MOSFETs”. In: Solid-State Electronics 185 (2021), p. 108067. doi: https://doi.org/10.1016/j.sse.2021.108067.

  • [265] G. Jegert, A. Kersch, W. Weinreich, and P. Lugli. “Ultimate Scaling of TiN / ZrO2 / TiN Capacitors: Leakage Currents and Limitations due to Electrode Roughness”. In: Journal of Applied Physics 109.1 (2011), p. 014504. doi: 10.1063/1.3531538.

  • [266] M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis, and J. R. Kirtley. “Theory of High-Field Electron Transport in Silicon Dioxide”. In: Physical Review B 31.12 (1985), p. 8124. doi: 10.1103/PhysRevB.31.8124.

  • [267] M. Pesic, S. Knebel, M. Geyer, S. Schmelzer, U. Boettger, N. Kolomiiets, V. V. Afanasev, K. Cho, C. Jung, J. Chang, H. Lim, T. Mikolajick, and U. Schroeder. “Low Leakage ZrO2 Based Capacitors for sub 20 nm Dynamic Random Access Memory Technology Nodes”. In: Journal of Applied Physics 119.6 (2016), p. 064101. doi: 10.1063/1.4941537.

  • [268] M. Houssa, M. Tuominen, M. Naili, V. Afanasev, A. Stesmans, S. Haukka, and M. M. Heyns. “Trap-Assisted Tunneling in High Permittivity Gate Dielectric Stacks”. In: Journal of Applied Physics 87.12 (2000), pp. 8615–8620. doi: 10.1063/1.373587.

  • [269] D. T. Gillespie. “Exact Stochastic Simulation of Coupled Chemical Reactions”. In: The Journal of Physical Chemistry 81.25 (1977), pp. 2340–2361. doi: 10.1021/j100540a008.

  • [270] A. S. Foster, V. B. Sulimov, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen. “Structure and Electrical Levels of Point Defects in Monoclinic Zirconia”. In: Phys. Rev. B 64 (22 Nov. 2001), p. 224108. doi: 10.1103/PhysRevB.64.224108.

  • [271] A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, D. M. Ramo, H.M. Rønnow, G. Aeppli, and C. Renner. “Trapping, Self-Trapping and the Polaron Family”. In: Journal of Physics: Condensed Matter 19.25 (2007), p. 255208. doi: 10.1088/0953-8984/19/25/255208.

  • [272] J. X. Zheng, G. Ceder, and W. K. Chim. “First-Principles Study on the Concentrations of Native Point Defects in High-Dielectric-Constant Binary Oxide Materials”. In: physica status solidi (RRL) – Rapid Research Letters 2.5 (2008), pp. 227–229. doi: https://doi.org/10.1002/pssr.200802152.

  • [273] D. Z. Gao, A. El-Sayed, and A. L. Shluger. “A Mechanism for Frenkel Defect Creation in Amorphous SiO2 Facilitated by Electron Injection”. In: Nanotechnology 27.50 (2016), p. 505207. doi: 10.1088/0957-4484/27/50/505207.

  • [274] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136 (3B Nov. 1964), B864–B871. doi: 10.1103/PhysRev.136.B864.

  • [275] T. D. Kuehne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schuett, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borstnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Mueller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Gloess, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter. “CP2K: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations”. In: The Journal of Chemical Physics 152.19 (2020), p. 194103. doi: 10.1063/5.0007045.

  • [276] S. Goedecker, M. Teter, and J. Hutter. “Separable Dual-Space Gaussian Pseudopotentials”. In: Phys. Rev. B 54 (3 July 1996), pp. 1703–1710. doi: 10.1103/PhysRevB.54.1703.

  • [277] M. Guidon, J. Hutter, and J. VandeVondele. “Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets”. In: Journal of Chemical Theory and Computation 5.11 (2009), pp. 3010–3021. doi: 10.1021/ct900494g.

  • [278] V. V. Afanasev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans. “Band Alignment and Defect States at SiC/Oxide Interfaces”. In: Journal of Physics: Condensed Matter 16.17 (Apr. 2004), S1839–S1856. doi: 10.1088/0953-8984/16/17/019.

  • [279] M. Guidon, J. Hutter, and J. VandeVondele. “Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations”. In: Journal of Chemical Theory and Computation 6.8 (2010), pp. 2348–2364. doi: 10.1021/ct1002225.

  • [280] A. El-Sayed, M. B. Watkins, A. L. Shluger, and V. V. Afanasev. “Identification of Intrinsic Electron Trapping Sites in Bulk Amorphous Silica from ab initio Calculations”. In: Microelectronic Engineering 109 (2013), pp. 68–71. issn: 0167-9317. doi: https://doi.org/10.1016/j.mee.2013.03.027.

  • [281] C. G. Van de Walle and J. Neugebauer. “First-Principles Calculations for Defects and Impurities: Applications to III-Nitrides”. In: Journal of Applied Physics 95.8 (2004), pp. 3851–3879. doi: 10.1063/1.1682673.

  • [282] G. Makov and M. C. Payne. “Periodic Boundary Conditions in ab initio Calculations”. In: Phys. Rev. B 51 (7 Feb. 1995), pp. 4014–4022. doi: 10.1103/PhysRevB.51.4014.

  • [283] Y. Wang, F. Zahid, J. Wang, and H. Guo. “Structure and Dielectric Properties of Amorphous high-κ Oxides: HfO2 , ZrO2 , and their Alloys”. In: Phys. Rev. B 85 (22 June 2012), p. 224110. doi: 10.1103/PhysRevB.85.224110.

  • [284] J. Strand, M. Kaviani, V. V. Afanasev, J. G. Lisoni, and A. L. Shluger. “Intrinsic Electron Trapping in Amorphous Oxide”. In: Nanotechnology 29.12 (2018), p. 125703. doi: 10.1088/1361-6528/aaa77a.

  • [285] J. Robertson and B. Falabretti. “Band Offsets of High-k Gate Oxides on III-V Semiconductors”. In: Journal of Applied Physics 100.1 (2006), p. 014111. doi: 10.1063/1.2213170.

  • [286] M. W. Feil, H. Reisinger, A. Kabakow, T. Aichinger, W. Gustin, and T. Grasser. “Optical Emission Correlated to Bias Temperature Instability in SiC MOSFETs”. In: 2022 IEEE International Reliability Physics Symposium (IRPS). 2022, 3B.1-1-3B.1–9. doi: 10.1109/IRPS48227.2022.9764584.