[1] N. Ashcroft and N. Mermin. Solid State Physics. New York: Holt, Rinehart and Winston, 1976. isbn: 9780030839931.
[2] G. Baccarani. Process and device modeling for microelectronics. Elsevier, 1993. isbn: 9780444899620.
[3] G. Baccarani, M. Rudan, R. Guerrieri, and P. Ciampolini. “Process and Device Modeling”. In: ed. by W. L. Engl. Amsterdam, The Netherlands, The Netherlands: North-Holland Publishing Co., 1986. Chap. Physical Models for Numerical Device Simulation, pp. 107–158. isbn: 0-444-87891-2. url: http://dl.acm.org/citation.cfm?id=21927.24382.
[4] M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser. “Modeling of hot carrier degradation using a spherical harmonics expansion of the bipolar Boltzmann transport equation”. In: 2012 International Electron Devices Meeting. Dec. 2012, pp. 30.5.1–30.5.4.
[5] M. Bina, S. Tyaginov, J. Franco, K. Rupp, Y. Wimmer, D. Osintsev, B. Kaczer, and T. Grasser. “Predictive Hot-Carrier Modeling of n-Channel MOSFETs”. In: IEEE Transactions on Electron Devices 61.9 (2014), 3103-3110. issn: 0018-9383. doi: 10.1109/TED.2014.2340575.
[6] M. Bina. “Charge Transport Models for Reliability Engineering of Semiconductor Devices”. PhD thesis. Technische Universität Wien, 2014.
[7] F. Bloch. “Über die Quantenmechanik der Elektronen in Kristallgittern”. In: Zeitschrift für Physik 52.7 (July 1929), pp. 555–600. issn: 0044-3328. doi: 10.1007/BF01339455. url: https://doi.org/10.1007/BF01339455.
[8] K. Blotekjaer. High-frequency Conductivity, Carrier Waves, and Acoustic Amplification in Drifted Semiconductor Plasmas. Defense Technical Information Center, 1966.
[9] S. Brandt. Datenanalyse: Mit statistischen Methoden und Computerprogrammen. Spektrum Akademischer Verlag, 1999. isbn: 9783827401588.
[10] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. M. Roux, and E. Vincent. “Hot-Carrier acceleration factors for low power management in DC-AC stressed 40nm NMOS node at high temperature”. In: 2009 IEEE International Reliability Physics Symposium. Apr. 2009, pp. 531–548. doi: 10.1109/IRPS.2009.5173308.
[11] K. F. Brennan. The Physics of Semiconductors. Cambridge University Press, 1999.
[12] G. Casella, C. P. Robert, and M. T. Wells. “Generalized Accept-Reject sampling schemes”. In: A Festschrift for Herman Rubin. Ed. by A. DasGupta. Vol. Volume 45. Lecture Notes–Monograph Series. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2004, pp. 342–347. doi: 10.1214/lnms/1196285403. url: https://doi.org/10.1214/lnms/1196285403.
[13] R. Chambers. “The Kinetic Formulation of Conduction Problems”. In: Proc. Phys. Soc. (London) A65 (1952), pp. 458–459.
[14] M. Y. Chang, D. W. Dyke, C. C. C. Leung, and P. A. Childs. “High-energy electron–electron interactions in silicon and their effect on hot carrier energy distributions”. In: Journal of Applied Physics 82 (1997), p. 2974.
[15] P. A. Childs and C. C. C. Leung. “A one-dimensional solution of the Boltzmann transport equation including electron-electron interactions”. In: Journal of Applied Physics 79 (1996), p. 222.
[16] M. Cohen and V. Heine. “Cancellation of Kinetic and Potential Energy in Atoms, Molecules, and Solids”. In: Physical Review 122 (6 June 1961), pp. 1821–1826. doi: 10.1103/PhysRev.122.1821. url: https://link.aps.org/doi/10.1103/PhysRev.122.1821.
[17] M. Cohen and J. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors. Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 2012. isbn: 9783642970801.
[18] A. Duncan, U. Ravaioli, and J. Jakumeit. “Full-band Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors”. In: IEEE Transactions on Electron Devices 45.4 (Apr. 1998), pp. 867–876. issn: 0018-9383. doi: 10.1109/16.662792.
[19] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann series in interactive 3D technology Bd. 1. Taylor & Francis, 2004. isbn: 9781558607323.
[20] G. Fasching, H. Hauser, and W. Smetana. Werkstoffe für die Elektrotechnik: Aufgabensammlung. Bd. 2. Springer Vienna, 1995. isbn: 9783211826843.
[21] W. Fawcett, A. Boardman, and S. Swain. “Monte Carlo determination of electron transport properties in gallium arsenide”. In: Journal of Physics and Chemistry of Solids 31.9 (1970), pp. 1963–1990. issn: 0022-3697. doi: https://doi.org/10.1016/0022-3697(70)90001-6. url: http://www.sciencedirect.com/science/article/pii/0022369770900016.
[22] A. Gnudi, D. Ventura, and G. Baccarani. “One-Dimensional Simulation of a Bipolar Transistor by means of Spherical Harmonics Expansion of the Boltzmann Transport Equation”. In: Proceedings of SISDEP. Vol. 4. 1991, pp. 205–213.
[23] A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh. “Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation”. In: Solid-State Electronics 36.4 (1993), pp. 575–581. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(93)90269-V. url: http://www.sciencedirect.com/science/article/pii/003811019390269V.
[24] N. Goldsman. “Modeling Electron Transport and Degradation Mechanisms in Semi- conductor Submicron Devices”. PhD thesis. Cornell University, 1089.
[25] N. Goldsman, L. Henrickson, and J. Frey. “A physics-based analytical/ numerical solution to the Boltzmann transport equation for use in device simulation”. In: Solid-State Electronics 34.4 (1991), pp. 389–396. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(91)90169-Y. url: http://www.sciencedirect.com/science/article/pii/003811019190169Y.
[26] N. Goldsman, C.-K. Lin, Z. Han, and C.-K. Huang. “Advances in the Spherical Harmonic–Boltzmann–Wigner approach to device simulation”. In: Superlattices and Microstructures 27.2 (2000), pp. 159–175. issn: 0749-6036. doi: https://doi.org/10.1006/spmi.1999.0810. url: http://www.sciencedirect.com/science/article/pii/S0749603699908108.
[27] T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr. “Using six moments of Boltzmann’s transport equation for device simulation”. In: Journal of Applied Physics 90.5 (2001), pp. 2389–2396. doi: 10.1063/1.1389757. url: https://doi.org/10.1063/1.1389757.
[28] T. Grasser, H. Kosina, and S. Selberherr. “Investigation of spurious velocity overshoot using Monte Carlo data”. In: Applied Physics Letters 79.12 (2001), pp. 1900–1902. doi: 10.1063/1.1405000. url: https://doi.org/10.1063/1.1405000.
[29] Grasser, Kosik, Jungemann, Kosina, Meinerzhagen, and Selberherr. “A non-parabolic six moments model for the simulation of sub-100 nm devices”. In: 2004 Abstracts 10th International Workshop on Computational Electronics. Oct. 2004, pp. 36–37. doi: 10.1109/IWCE.2004.1407308.
[30] M. Gritsch. “Numerical Modeling of Silicon-on-Insulator MOSFETs”. PhD thesis. Technische Universität Wien, 2002.
[31] C. Guerin, V. Huard, and A. Bravaix. “The Energy-Driven Hot-Carrier Degradation Modes of nMOSFETs”. In: IEEE Transactions on Device and Materials Reliability 7.2 (June 2007), pp. 225–235. issn: 1530-4388. doi: 10.1109/TDMR.2007.901180.
[32] C. Guerin, V. Huard, and A. Bravaix. “General framework about defect creation at the SiSiO2 interface”. In: Journal of Applied Physics 105.11 (2009), p. 114513. doi: 10.1063/1.3133096. url: https://doi.org/10.1063/1.3133096.
[33] R. N. Hall. “Electron-Hole Recombination in Germanium”. In: Phys. Rev. 87 (2 July 1952), pp. 387–387. doi: 10.1103/PhysRev.87.387. url: https://link.aps.org/doi/10.1103/PhysRev.87.387.
[34] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen’s monographs on applied probability and statistics. Methuen, 1964.
[35] C. Herring. “A New Method for Calculating Wave Functions in Crystals”. In: Phys. Rev. 57 (12 June 1940), pp. 1169–1177. doi: 10.1103/PhysRev.57.1169. url: https://link.aps.org/doi/10.1103/PhysRev.57.1169.
[36] R. Herrmann and U. Preppernau. Elektronen im Kristall. Springer Vienna, 1980. isbn: 9783211814888.
[37] K. Hess. Advanced theory of semiconductor devices. Solid state physical electronics series. Prentice-Hall, 1988. isbn: 9780130115119.
[38] S. M. Hong, A. T. Pham, and C. Jungemann. Deterministic Solvers for the Boltzmann Transport Equation. Computational Microelectronics. Springer Vienna, 2011. isbn: 9783709107782.
[39] S. Hong, G. Matz, and C. Jungemann. “A Deterministic Boltzmann Equation Solver Based on a Higher Order Spherical Harmonics Expansion With Full-Band Effects”. In: IEEE Transactions on Electron Devices 57.10 (Oct. 2010), pp. 2390–2397. issn: 0018-9383. doi: 10.1109/TED.2010.2062519.
[40] S.-M. Hong and C. Jungemann. “A fully coupled scheme for a Boltzmann-Poisson equation solver based on a spherical harmonics expansion”. In: Journal of Computational Electronics 8.3 (Oct. 2009), p. 225. issn: 1572-8137. doi: 10.1007/s10825-009-0294-y. url: https://doi.org/10.1007/s10825-009-0294-y.
[41] G. Indalecio and H. Kosina. “Monte Carlo Simulation of Electron-electron Interactions in Bulk Silicon”. In: Book of Abstracts of The 12th International Conference on Scientific Computing in Electrical Engineering. Sept. 2018, pp. 97–98.
[42] J. D. Jackson, C. Witte, and K. Müller. Klassische Elektrodynamik. Uberarbeitete Auflage. De Gruyter, 2006. isbn: 9783110189704.
[43] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Wien-New York: Springer, 1989. isbn: 3-211-82110-4.
[44] C. Jacoboni, R. Minder, and G. Majni. “Effects of band non-parabolicity on electron drift velocity in silicon above room temperature”. In: Journal of Physics and Chemistry of Solids 36.10 (1975), pp. 1129–1133. issn: 0022-3697. doi: https://doi.org/10.1016/0022-3697(75)90055-4. url: http://www.sciencedirect.com/science/article/pii/0022369775900554.
[45] C. Jacoboni, P. Poli, and L. Rota. “A new Monte Carlo technique for the solution of the Boltzmann transport equation”. In: Solid-State Electronics 31.3 (1988), pp. 523–526. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(88)90332-2. url: http://www.sciencedirect.com/science/article/pii/0038110188903322.
[46] C. Jacoboni and L. Reggiani. “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials”. In: Rev. Mod. Phys. 55 (3 July 1983), pp. 645–705. doi: 10.1103/RevModPhys.55.645. url: https://link.aps.org/doi/10.1103/RevModPhys.55.645.
[47] F. James. “Monte Carlo theory and practice”. In: Reports on Progress in Physics 43.9 (1980), pp. 1144–1189. doi: 10.1088/0034-4885/43/9/002. url: https://doi.org/10.1088/0034-4885/43/9/002.
[48] S. Jin, S. Hong, and C. Jungemann. “An Efficient Approach to Include Full-Band Effects in Deterministic Boltzmann Equation Solver Based on High-Order Spherical Harmonics Expansion”. In: IEEE Transactions on Electron Devices 58.5 (May 2011), pp. 1287–1294. issn: 0018-9383. doi: 10.1109/TED.2011.2108659.
[49] A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics. Springer Berlin Heidelberg, 2009. isbn: 9783540895268.
[50] C. Jungemann, A. T. Pham, B. Meinerzhagen, C. Ringhofer, and M. Bollhöfer. “Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle”. In: Journal of Applied Physics 100.2 (2006), p. 024502. doi: 10.1063/1.2212207. url: https://doi.org/10.1063/1.2212207.
[51] C. Jungemann and B. Meinerzhagen. Hierarchical Device Simulation. Springer, 2003.
[52] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods, Volume 1: Basics. Monte Carlo Methods. Wiley, 1986. isbn: 9780471898399.
[53] C. Kittel. Einführung in die Festkörperphysik. Oldenbourg, 2006. isbn: 9783486577235.
[54] C. Kittel and C. J. Fong. Quantentheorie der Festkörper. Oldenbourg, 1989. isbn: 3486214209.
[55] C. Kittel. Introduction to Solid State Physics. Wiley, 2004. isbn: 9780471415268.
[56] L. Kleinman. “Relativistic norm-conserving pseudopotential”. In: Phys. Rev. B 21 (6 Mar. 1980), pp. 2630–2631. doi: 10.1103/PhysRevB.21.2630. url: https://link.aps.org/doi/10.1103/PhysRevB.21.2630.
[57] N. Koike and K. Tatsuuma. “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs”. In: 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No.02CH37320). Apr. 2002, pp. 86–92. doi: 10.1109/RELPHY.2002.996614.
[58] H. Kosina, M. Harrer, P. Vogl, and S. Selberherr. “A Monte Carlo Transport Model Based on Spherical Harmonics Expansion of the Valence Bands”. In: Proceedings of the International Conference on Simulation of Semiconductor Devices and Processes (SISDEP). 1995, pp. 396–399.
[59] H. Kosina, M. Nedjalkov, and S. Selberherr. “Theory of the Monte Carlo Method for Semiconductor Device Simulation”. In: IEEE Transactions on Electron Devices 47.10 (2000), pp. 1898–1908.
[60] H. Kosina. “Simulation des Ladungstransportes in elektronischen Bauelementen mit Hilfe der Monte-Carlo-Methode”. PhD thesis. Technische Universität Wien, 1992.
[61] H. Kosina, M. Nedjalkov, and S. Selberherr. “The stationary Monte Carlo method for device simulation. Part I. Theory”. In: Journal of Applied Physics 93.6 (2003), pp. 3553–3563.
[62] H. Kosina, M. Nedjalkov, and S. Selberherr. “A Stable Backward Monte Carlo Method for the Solution of the Boltzmann Equation”. In: Large-Scale Scientific Computing. Ed. by I. Lirkov, S. Margenov, J. Waśniewski, and P. Yalamov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 170–177. isbn: 978-3-540-24588-9.
[63] P. W. Lagger. “Scattering Operators for the Spherical Harmonics Expansion of the Boltzmann Transport Equation”. MA thesis. Technische Universität Wien.
[64] P. Lugli and D. K. Ferry. “Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors”. In: IEEE Transactions on Electron Devices 32.11 (Nov. 1985), pp. 2431–2437. issn: 0018-9383. doi: 10.1109/T-ED.1985.22291.
[65] M. Lundstrom. Fundamentals of carrier transport. Cambridge Univrsity Press, 2000.
[66] P. Markowich, C. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer Vienna, 2011. isbn: 9783709169629.
[67] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 2004. isbn: 9780521782852.
[68] D. Matz. “Hot-carrier distribution function in nonparabolic energy bands”. In: Journal of Physics and Chemistry of Solids 28.3 (1967), pp. 373–382. issn: 0022-3697. doi: https://doi.org/10.1016/0022-3697(67)90302-2. url: http://www.sciencedirect.com/science/article/pii/0022369767903022.
[69] W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding. “The Effects of a Multiple Carrier Model of Interface States Generation of Lifetime Extraction for MOSFETs,” in: Proc. Int. Conf. Mod. Sim. Micro. Vol. 1. 2002, pp. 576–579.
[70] B. Meinerzhagen and W. L. Engl. “The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors”. In: IEEE Transactions on Electron Devices 35.5 (May 1988), pp. 689–697. issn: 0018-9383. doi: 10.1109/16.2514.
[71] Minimos-NT User Manual. 2018. url: www.globaltcad.com.
[72] B. Nag. Electron Transport in Compound Semiconductors. Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 1980. isbn: 9783540098454.
[73] M. Nedjalkov and P. Vitanov. “Iteration approach for solving the Boltzmann equation with the Monte Carlo method”. In: Solid-State Electronics 32.10 (1989), pp. 893–896. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(89)90067-1. url: http://www.sciencedirect.com/science/article/pii/0038110189900671.
[74] M. E. J. Newmann and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford University Press, 1999.
[75] S. K. Park and K. W. Miller. “Random Number Generators: Good Ones Are Hard to Find”. In: Commun. ACM 31.10 (Oct. 1988), pp. 1192–1201. issn: 0001-0782. doi: 10.1145/63039.63042. url: http://doi.acm.org/10.1145/63039.63042.
[76] J. C. Phillips and L. Kleinman. “New Method for Calculating Wave Functions in Crystals and Molecules”. In: Phys. Rev. 116 (2 Oct. 1959), pp. 287–294. doi: 10.1103/PhysRev.116.287. url: https://link.aps.org/doi/10.1103/PhysRev.116.287.
[77] A. Prechtl. Elektrodynamik.. TU Wien, 2005.
[78] P. J. Price. “Monte Carlo Calculation of Electron Transport in Solids”. In: Lasers, Junctions, Transport. Ed. by R. Willardson and A. C. Beer. Vol. 14. Semiconductors and Semimetals. Elsevier, 1979, pp. 249–308. doi: https://doi.org/10.1016/S0080-8784(08)60267-7. url: http://www.sciencedirect.com/science/article/pii/S0080878408602677.
[79] Y. M. Randriamihaja, X. Federspie, V. Huard, A. Bravaix, and P. Palestri. “New Hot Carrier degradation modeling reconsidering the role of EES in ultra short N-channel MOSFETs”. In: 2013 IEEE International Reliability Physics Symposium (IRPS). Apr. 2013, XT.1.1–XT.1.5. doi: 10.1109/IRPS.2013.6532116.
[80] S. E. Rauch, F. J. Guarin, and G. LaRosa. “Impact of E-E scattering to the hot carrier degradation of deep submicron NMOSFETs”. In: IEEE Electron Device Letters 19.12 (Dec. 1998), pp. 463–465. issn: 0741-3106. doi: 10.1109/55.735747.
[81] C. Rocchini and P. Cignoni. “Generating Random Points in a Tetrahedron”. In: Journal of Graphics Tools 5 (Feb. 2001). doi: 10.1080/10867651.2000.10487528.
[82] W. Roosbroeck. “Theory of the Flow of Electrons and Holes in Germanium and Other Semiconductors”. In: Bell System Technical Journal 29.4 (1950), pp. 560–607. doi: 10.1002/j.1538-7305.1950.tb03653.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1950.tb03653.x.
[83] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, 1981.
[84] K. Rupp. “Numerical Solution of the Boltzmann Transport Equation using Spherical Harmonics Expansions”. MA thesis. Technische Universität Wien, 2009.
[85] K. Rupp, T. Grasser, and A. Jüngel. “On the feasibility of spherical harmonics expansions of the Boltzmann transport equation for three-dimensional device geometries”. In: 2011 International Electron Devices Meeting. Dec. 2011, pp. 34.1.1–34.1.4.
[86] K. Rupp, C. Jungemann, S.-M. Hong, M. Bina, T. Grasser, and A. Jüngel. “A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation”. In: Journal of Computational Electronics 15.3 (Sept. 2016), pp. 939–958. issn: 1572-8137. doi: 10.1007/s10825-016-0828-z. url: https://doi.org/10.1007/s10825-016-0828-z.
[87] K. Rupp. “Deterministic Numerical Solution of the Boltzmann Transport Equation”. PhD thesis. Technische Universität Wien, 2011.
[88] E. Sangiorgi, B. Ricco, and F. Venturi. “An efficient Monte Carlo Simulator for MOS devices”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 7.2 (Feb. 1988), pp. 259–271. issn: 0278-0070.
[89] F. Schwabl. Quantenmechanik (QM I). Springer-Lehrbuch. Springer, 2002. isbn: 9783540431060.
[90] K. Seeger. Semiconductor Physics: An Introduction. Handbook of Experimental Pharmacology. Springer-Verlag, 1989. isbn: 9783540194101.
[91] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer Vienna, 1984. isbn: 9783211818008.
[92] P. Sharma, S. Tyaginov, S. E. Rauch, J. Franco, A. Makarov, M. I. Vexler, B. Kaczer, and T. Grasser. “Hot-Carrier Degradation Modeling of Decananometer nMOSFETs Using the Drift-Diffusion Approach”. In: IEEE Electron Device Letters 38.2 (Feb. 2017), pp. 160–163. issn: 0741-3106. doi: 10.1109/LED.2016.2645901.
[93] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Physical Review 87 (5 Sept. 1952), pp. 835–842. doi: 10.1103/PhysRev.87.835. url: https://link.aps.org/doi/10.1103/PhysRev.87.835.
[94] T. Simlinger, H. Brech, T. Grave, and S. Selberherr. “Simulation of Submicron Double-Heterojunction High Electron Mobility Transistors with MINIMOS-NT”. In: IEEE Transactions on Electron Devices 44 (1997), pp. 700–707.
[95] J. Singh. Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, 2003. isbn: 9780521823791.
[96] R. Sonderfeld. “Numerical Calculation of Semiconductor Band Structures”. MA thesis. Technische Universität Wien, 2014.
[97] K. Sonoda, M. Yamaji, K. Taniguchi, C. Hamaguchi, and S. T. Dunham. “Moment expansion approach to calculate impact ionization rate in submicron silicon devices”. In: Journal of Applied Physics 80.9 (1996), pp. 5444–5448. doi: 10.1063/1.362732. url: https://doi.org/10.1063/1.362732.
[98] R. Stratton. “Diffusion of Hot and Cold Electrons in Semiconductor Barriers”. In: Phys. Rev. 126 (6 June 1962), pp. 2002–2014. doi: 10.1103/PhysRev.126.2002. url: https://link.aps.org/doi/10.1103/PhysRev.126.2002.
[99] S. Sze and K. Ng. Physics of Semiconductor Devices. Wiley, 2006. isbn: 9780470068304.
[100] N. Takenaka, M. Inoue, and Y. Inuishi. “Influence of Inter-Carrier Scattering on Hot Electron Distribution Function in GaAs”. In: Journal of the Physical Society of Japan 47.3 (1979), pp. 861–868. doi: 10.1143/JPSJ.47.861. url: https://doi.org/10.1143/JPSJ.47.861.
[101] J. Y. Tang and K. Hess. “Theory of hot electron emission from silicon into silicon dioxide”. In: Journal of Applied Physics 54.9 (1983), pp. 5145–5151. doi: 10.1063/1.332738. url: https://doi.org/10.1063/1.332738.
[102] K. Tomizawa. Numerical Simulation of Submicron Semiconductor Devices. Artech House, 1993.
[103] J. Y. Tsai, T. C. Chang, C. E. Chenn, S. H. Ho, K. J. Liu, Y. Lu, X. W. Liu, T. Y. Tseng, O. Cheng, C. T. Huang, and C. S. Lu. “Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks”. In: Applied Physics Letters 105.14 (2014), p. 143505. doi: 10.1063/1.4896995. url: https://doi.org/10.1063/1.4896995.
[104] S. Tyaginov, M. Bina, J. Franco, D. Osintsev, O. Triebl, B. Kaczer, and T. Grasser. “Physical modeling of hot-carrier degradation for short- and long-channel MOSFETs”. In: 2014 IEEE International Reliability Physics Symposium. June 2014, XT.16.1–XT.16.8. doi: 10.1109/IRPS.2014.6861193.
[105] S.-E. Ungersböck. “Numerische Berechnung der Bandstruktur von Halbleitern”. MA thesis. Technische Universität Wien, 2002.
[106] M. C. Vecchi and M. Rudan. “Modeling electron and hole transport with full-band structure effects by means of the Spherical-Harmonics Expansion of the BTE”. In: IEEE Transactions on Electron Devices 45.1 (Jan. 1998), pp. 230–238. issn: 0018-9383. doi: 10.1109/16.658836.
[107] D. Ventura, A. Gnudi, and G. Baccarani. “Inclusion of Electron-Electron Scattering in the Spherical Harmonics Expansion Treatment of the Boltzmann Transport Equation”. In: Simulation of Semiconductor Devices and Processes. Ed. by S. Selberherr, H. Stippel, and E. Strasser. Vienna: Springer Vienna, 1993, pp. 161–164. isbn: 978-3-7091-6657-4.
[108] ViennaSHE User Manual. 2018. url: http://viennashe.sourceforge.net/doc/.
[109] VMC Homepage . url: http://www.iue.tuwien.ac.at/index.php?id=vmc.
[110] M. Wagner. “A Base Library for Full Band Monte Carlo Simulations”. MA thesis. Technische Universität Wien, 2004.
[111] R. Wyckoff. Crystal Structures. Wiley, 1963. isbn: 9780470968604.
[112] P. YU and M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties. Graduate Texts in Physics. Springer Berlin Heidelberg, 2010. isbn: 9783642007101.
[P1] M. Kampl and H. Kosina. “Investigation of Hot-carrier Effects Using a Backward Monte Carlo Method and Full Bands”. In: Conference Proceedings of International Workshop on Computational Nanotechnology. 2017, pp. 147–148.
[P2] M. Kampl, H. Kosina, and O. Baumgartner. “Hot Carrier Study Including e-e Scattering Based on a Backward Monte Carlo Method”. In: Proceedings of the 22nd International Conference on Simulation of Semiconductor Processes and Devices. 2017, pp. 293–296.
[P3] M. Kampl. “Implementation of a backward Monte Carlo algorithm to investigate hot carriers in semiconductor devices”. MA thesis. Technische Universität Wien, 2015.
[P4] M. Kampl and H. Kosina. “The backward Monte Carlo method for semiconductor device simulation”. In: Journal of Computational Electronics 17.4 (Dec. 2018), pp. 1492–1504. issn: 1572-8137. doi: 10.1007/s10825-018-1225-6. url: https://doi.org/10.1007/s10825-018-1225-6.
[P5] H. Kosina and M. Kampl. “Effect of Electron-Electron Scattering on the Carrier Distribution in Semiconductor Devices”. In: Proceedings of the 23rd International Conference on Simulation of Semiconductor Processes and Devices. 2018, pp. 18–21.
[P6] H. Kosina and M. Kampl. “Current Estimation in Backward Monte Carlo Simulations”. In: Conference Proceedings of International Workshop on Computational Nanotechnology. 2019, accepted.
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne
unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet.
Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.
Datum Markus Kampl
« PreviousUpNext »Contents