(image) (image) [Previous] [Next]

Advanced Electrical Characterization of Charge Trapping in MOS Transistors

References

  • [1] J. E. Lilienfeld. “Method and Apparatus for Controlling Electric Currents”. US1745175. Filed 1926. Jan. 28, 1930.

  • [2] O. Heil. “Improvements in or Relating to Electrical Amplifiers and other Control Arrangements and Devices”. GB439457. Filed 1935. Dec. 6, 1935.

  • [3] W. Shockley and G. L. Pearson. “Modulation of Conductance of Thin Films of Semi-Conductors by Surface Charges”. In: Physical Review 74.2 (1948), p. 232. doi: 10.1103/PhysRev.74.232.

  • [4] E. H. Nicollian and J. R. Brews. MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley New York, 1982. isbn: 978-0-471-08500-3.

  • [5] W. L. Brown. “n-Type Surface Conductivity on p-Type Germanium”. In: Physical Review 91.3 (Aug. 1953), pp. 518–527. issn: 0031-899X. doi: 10.1103/physrev.91.518.

  • [6] I. M. Ross. “Semiconductive Translating Device”. US2791760. Filed 1955. May 7, 1957.

  • [7] M. M. Atalla, E. Tannenbaum, and E. J. Scheibner. “Stabilization of Silicon Surfaces by Thermally Grown Oxides”. In: Bell System Technical Journal 38.3 (May 1959), pp. 749–783. doi: 10.1002/j.1538-7305.1959.tb03907.x.

  • [8] D. Kahng. “Electric Field Controlled Semiconductor Device”. US3102230. Filed 1960. Aug. 27, 1963.

  • [9] M. M. Atalla. “Semiconductor Devices Having Dielectric Coatings”. US3206670. Filed 1960. Sept. 14, 1965.

  • [10] B. E. Deal. “Method of Making Stable Semiconductor Devices”. US3426422. Filed 1965. Feb. 11, 1969.

  • [11] W. H. Miller and B. Fred. “Semiconductor Devices and Passivation Thereof”. US3343049. Filed 1964. Sept. 19, 1967.

  • [12] D. R. Kerr, J. Hopewell, and D. R. Young. “Methods of Improving Electrical Characteristics of Semiconductor Devices and Products so Produced”. US3303059. Filed 1964. Feb. 7, 1967.

  • [13] F. M. Wanlass. “Low Stand-by Power Complementary Field Effect Circuitry”. US3356858. Filed 1963. Dec. 5, 1967.

  • [14] J. C. Sarace, R. E. Kerwin, D. L. Klein, and R. Edwards. “Metal-Nitride-Oxide-Silicon Field-Effect Transistors, with Self-Aligned Gates”. In: Solid-State Electronics 11.7 (1968), pp. 653–660. doi: 10.1016/0038-1101(68)90067-1.

  • [15] D. Kahng and S. M. Sze. “A Floating Gate and its Application to Memory Devices”. In: The Bell System Technical Journal 46.6 (1967), pp. 1288–1295. doi: 10.1002/j.1538-7305.1967.tb01738.x.

  • [16] R. H. Dennard. “Field-Effect Transistor Memory”. US3387286. Filed 1967. June 4, 1968.

  • [17] R. W. Bower, H. G. Dill, K. G. Aubuchon, and S. A. Thompson. “MOS Field Effect Transistors Formed by Gate Masked Ion Implantation”. In: IEEE Transactions on Electron Devices 15.10 (1968), pp. 757–761. doi: 10.1109/T-ED.1968.16511.

  • [18] G. E. Smith. “Nobel Lecture: The invention and early history of the CCD”. In: Reviews of Modern Physics 82.3 (2010), p. 2307. doi: 10.1103/RevModPhys.82.2307.

  • [19] M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and A. Bravaix. “Interface Trap Generation and Hole Trapping under NBTI and PBTI in Advanced CMOS Technology with a 2-nm Gate Oxide”. In: IEEE Transactions on Devices and Materials Reliability 4.4 (2004), pp. 715–722. doi: 10.1109/TDMR.2004.840856.

  • [20] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, J. Franco, M. Toledano-Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps”. In: IEEE Transactions on Electron Devices 58.11 (Nov. 2011), pp. 3652–3666. doi: 10.1109/ted.2011.2164543.

  • [21] J. H. Stathis, S. Mahapatra, and T. Grasser. “Controversial Issues in Negative Bias Temperature Instability”. In: Microelectronics Reliability 81 (Feb. 2018), pp. 244–251. doi: 10.1016/j.microrel.2017.12.035.

  • [22] M. J. Uren, M. J. Kirton, and S. Collins. “Anomalous Telegraph Noise in Small-Area Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Physical Review B 37 (14 May 1988), pp. 8346–8350. doi: 10.1103/PhysRevB.37.8346.

  • [23] A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti. “Comprehensive Analysis of Random Telegraph Noise Instability and its Scaling in Deca–Nanometer Flash Memories”. In: IEEE Transactions on Electron Devices 56.8 (2009), pp. 1746–1752. doi: 10.1109/TED.2009.2024031.

  • [24] M. Luo, R. Wang, S. Guo, J. Wang, J. Zou, and R. Huang. “Impacts of Random Telegraph Noise (RTN) on Digital Circuits”. In: IEEE Transactions on Electron Devices 62.6 (June 2015), pp. 1725–1732. issn: 0018-9383. doi: 10.1109/ted.2014.2368191.

  • [25] E. Rosenbaum and L. F. Register. “Mechanism of Stress-Induced Leakage Current in MOS Capacitors”. In: IEEE Transactions on Electron Devices 44.2 (1997), pp. 317–323. doi: 10.1109/16.557724.

  • [26] W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, and T. Grasser. “Advanced Modeling of Charge Trapping: RTN, 1/ f Noise, SILC, and BTI”. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, Sept. 2014, pp. 77–80. doi: 10.1109/sispad.2014.6931567.

  • [27] G. Rzepa, M. Waltl, W. Goes, B. Kaczer, and T. Grasser. “Microscopic Oxide Defects Causing BTI, RTN, and SILC on High-k FinFETs”. In: 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, Sept. 2015, pp. 144–147. doi: 10.1109/sispad.2015.7292279.

  • [28] F. Jiménez-Molinos, A. Palma, F. Gámiz, J. Banqueri, and J. A. López-Villanueva. “Physical Model for Trap-assisted Inelastic Tunneling in Metal-Oxide-Semiconductor Structures”. In: Journal of Applied Physics 90.7 (Oct. 2001), pp. 3396–3404. issn: 0021-8979. doi: 10.1063/1.1398603.

  • [29] S. A. Abbas and R. C. Dockerty. “Hot-Carrier Instability in IGFET’s”. In: Applied Physics Letters 27.3 (1975), pp. 147–148. doi: 10.1063/1.88387.

  • [30] T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H. Yu. “1 µm MOSFET VLSI Technology: Part IV—Hot-Electron Design Constraints”. In: IEEE Transactions on Electron Devices 26.4 (1979), pp. 346–353. doi: 10.1109/T-ED.1979.19433.

  • [31] M. L. Reed and J. D. Plummer. “Chemistry of Si-SiO2 Interface Trap Annealing”. In: Journal of Applied Physics 63.12 (June 1988), pp. 5776–5793. issn: 0021-8979. doi: 10.1063/1.340317.

  • [32] E. H. Poindexter. “MOS Interface States: Overview and Physicochemical Perspective”. In: Semiconductor Science and Technology 4.12 (Dec. 1989), pp. 961–969. doi: 10.1088/0268-1242/4/12/001.

  • [33] Y. Nishi. “Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I”. In: Japanese Journal of Applied Physics 10.1 (Jan. 1971), pp. 52–62. doi: 10.1143/jjap.10.52.

  • [34] G. J. Gerardi, E. H. Poindexter, P. J. Caplan, and N. M. Johnson. “Interface Traps and Pb Centers in Oxidized (100) Silicon Wafers”. In: Applied Physics Letters 49 (1986), pp. 348–350. issn: 0003-6951. doi: 10.1063/1.97611.

  • [35] N. H. Thoan, K. Keunen, V. V. Afanas’ev, and A. Stesmans. “Interface State Energy Distribution and Pb Defects at Si(110)/SiO2 Interfaces: Comparison to (111) and (100) Silicon Orientations”. In: 109 (2011), p. 013710. issn: 0021-8979. doi: 10.1063/1.3527909.

  • [36] J. P. Campbell and P. M. Lenahan. “Density of States of Pb1 Si/SiO2 Interface Trap Centers”. In: Applied Physics Letters 80.11 (2002), pp. 1945–1947. doi: 10.1063/1.1461053.

  • [37] D. M. Fleetwood. “’Border Traps’ in MOS Devices”. In: IEEE Transactions on Nuclear Science 39.2 (1992), pp. 269–271. doi: 10.1109/23.277495.

  • [38] M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser. “Modeling of Hot Carrier Degradation using a Spherical Harmonics Expansion of the Bipolar Boltzmann Transport Equation”. In: 2012 International Electron Devices Meeting. IEEE, Dec. 2012. doi: 10.1109/iedm.2012.6479138.

  • [39] M. Waltl. “Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors”. In: IEEE Transactions on Device and Materials Reliability 20.2 (2020), pp. 242–250. doi: 10.1109/tdmr.2020.2988650.

  • [40] A.-M. El-Sayed, M. B. Watkins, V. V. Afanas’ev, and A. L. Shluger. “Nature of Intrinsic and Extrinsic Electron Trapping in SiO2 ”. In: Physical Review B 89.12 (Mar. 2014), p. 125201. doi: 10.1103/physrevb.89.125201.

  • [41] A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V. V. Afanas’ev, and A. L. Shluger. “Theoretical Models of Hydrogen-Induced Defects in Amorphous Silicon Dioxide”. In: Physical Review B 92.1 (July 2015), p. 014107. doi: 10.1103/physrevb.92.014107.

  • [42] A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger. “Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide”. In: Physical Review Letters 114.11 (Mar. 2015), p. 115503. doi: 10.1103/physrevlett.114.115503.

  • [43] A. L. Shluger and K. P. McKenna. “Models of Oxygen Vacancy Defects Involved in Degradation of Gate Dielectrics”. In: 2013 IEEE International Reliability Physics Symposium (IRPS). Apr. 2013, 5A.1.1–5A.1.9. doi: 10.1109/IRPS.2013.6532018.

  • [44] S. T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S. N. Rashkeev, D. M. Fleetwood, and R. D. Schrimpf. “The E0 Center and Oxygen Vacancies in SiO2 ”. In: Journal of Non-Crystalline Solids 354.2-9 (2008), pp. 217–223. doi: 10.1016/j.jnoncrysol.2007.08.080.

  • [45] Y. Wimmer, A.-M. El-Sayed, W. Goes, T. Grasser, and A. L. Shluger. “Role of Hydrogen in Volatile Behaviour of Defects in SiO2 -based Electronic Devices”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol. 472. 2190. The Royal Society. 2016, p. 20160009. doi: 10.1098/rspa.2016.0009.

  • [46] D. T. Gillespie. Markov Processes: An Introduction for Physical Scientists. Elsevier Science, 1991. isbn: 9780080918372.

  • [47] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. Vol. 1. Elsevier Science, 1992. isbn: 9780080571386.

  • [48] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Physical review 87.5 (1952), p. 835. doi: 10.1103/PhysRev.87.835.

  • [49] G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P. Roussel, D. Linten, B. Kaczer, and T. Grasser. “Comphy — A Compact-physics Framework for Unified Modeling of BTI”. In: Microelectronics Reliability 85 (2018), pp. 49–65. issn: 0026-2714. doi: 10.1016/j.microrel.2018.04.002.

  • [50] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52.1 (Jan. 2012), pp. 39–70. doi: 10.1016/j.microrel.2011.09.002.

  • [51] M. J. Kirton and M. J. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/f) Noise”. In: Advances in Physics 38.4 (1989), pp. 367–468. doi: 10.1080/00018738900101122.

  • [52] M. Schulz and N. M. Johnson. “Evidence for Multiphonon Emission from Interface States in MOS Structures”. In: Solid State Communications 25.7 (1978), pp. 481–484. doi: 10.1016/0038-1098(78)90162-X.

  • [53] K. Huang, A. Rhys, and N. F. Mott. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 204. 1078. 1950, pp. 406–423. doi: 10.1098/rspa.1950.0184.

  • [54] C. Henry and D. Lang. “Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP”. In: Physical Review B 15.2 (1977), p. 989. doi: 10.1103/PhysRevB.15.989.

  • [55] W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. L. Shluger, and T. Grasser. “Identification of Oxide Defects in Semiconductor Devices: A Systematic Approach Linking DFT to Rate Equations and Experimental Evidence”. In: Microelectronics Reliability 87 (2018), pp. 286–320. issn: 0026-2714. doi: 10.1016/j.microrel.2017.12.021.

  • [56] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.19273892002.

  • [57] J. Franck and E. G. Dymond. “Elementary Processes of Photochemical Reactions”. In: Transactions of the Faraday Society 21 (February 1926), pp. 536–542. doi: 10.1039/TF9262100536.

  • [58] E. U. Condon. “Nuclear Motions Associated with Electron Transitions in Diatomic Molecules”. In: Physical Review 32 (6 Dec. 1928), pp. 858–872. doi: 10.1103/PhysRev.32.858.

  • [59] E. Fermi. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago. University of Chicago Press, 1950. isbn: 978-0-226-24365-8.

  • [60] W. Goes, F. Schanovsky, and T. Grasser. “Advanced Modeling of Oxide Defects”. In: Bias Temperature Instability for Devices and Circuits. Springer, 2014, pp. 409–446. doi: 10.1007/978-1-4614-7909-3_16.

  • [61] Y.-Y. Liu, F. Liu, R. Wang, J.-W. Luo, X. Jiang, R. Huang, S.-S. Li, and L.-W. Wang. “Characterizing the Charge Trapping across Crystalline and Amorphous Si/SiO2 /HfO2 Stacks from First-Principle Calculations”. In: Physical Review Applied 12.6 (Dec. 2019), p. 064012. doi: 10.1103/physrevapplied.12.064012.

  • [62] Y.-Y. Liu, F. Zheng, X. Jiang, J.-W. Luo, S.-S. Li, and L.-W. Wang. “Ab Initio Investigation of Charge Trapping Across the Crystalline-Si–Amorphous-SiO2 Interface”. In: Physical Review Applied 11.4 (2019), p. 044058. doi: 10.1103/PhysRevApplied.11.044058.

  • [63] K. V. Mikkelsen and M. A. Ratner. “Electron Tunneling in Solid-State Electron-Transfer Reactions”. In: Chemical Reviews 87.1 (1987), pp. 113–153. doi: 10.1021/cr00077a007.

  • [64] F. Schanovsky, O. Baumgartner, and T. Grasser. “Multi Scale Modeling of Multi Phonon Hole Capture in the Context of NBTI”. In: 2011 International Conference on Simulation of Semiconductor Processes and Devices. IEEE. IEEE, Sept. 2011, pp. 15–18. doi: 10.1109/sispad.2011.6035038.

  • [65] T. Grasser, M. Waltl, W. Goes, Y. Wimmer, A.-M. El-Sayed, A. Shluger, and B. Kaczer. “On the Volatility of Oxide Defects: Activation, Deactivation and Transformation”. In: IEEE Int. Reliab. Phys. Symp. Proc.. IEEE, Apr. 2015, 5A.3.1–5A.3.8. doi: 10.1109/irps.2015.7112739.

  • [66] T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer. “Switching Oxide Traps as the Missing Link Between Negative Bias Temperature Instability and Random Telegraph Noise”. In: IEEE Int. Electron Devices Meet.. IEEE, Dec. 2009, pp. 1–4. doi: 10.1109/iedm.2009.5424235.

  • [67] E. Bury, R. Degraeve, M. J. Cho, B. Kaczer, W. Goes, T. Grasser, N. Horiguchi, and G. Groeseneken. “Study of (correlated) Trap Sites in SILC, BTI and RTN in SiON and HKMG Devices”. In: Marina Bay Sands (June 30, 2014). Marina Bay Sands: IEEE, June 30, 2014, pp. 250–253. isbn: 978-1-4799-3909-1. doi: 10.1109/IPFA.2014.6898196.

  • [68] M. Waltl, W. Goes, K. Rott, H. Reisinger, and T. Grasser. “A Single-trap Study of PBTI in SiON nMOS Transistors: Similarities and Differences to the NBTI/pMOS Case”. In: IEEE, June 1, 2014, XT.18.1–XT.18.5. doi: 10.1109/IRPS.2014.6861195.

  • [69] M. Waltl, G. Rzepa, A. Grill, W. Goes, J. Franco, B. Kaczer, L. Witters, J. Mitard, N. Horiguchi, and T. Grasser. “Superior NBTI in High-k SiGe Transistors - Part I: Experimental”. In: IEEE Transactions on Electron Devices 64.5 (May 2017), pp. 2092–2098. issn: 0018-9383. doi: 10.1109/TED.2017.2686086.

  • [70] T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, et al. “Gate-Sided Hydrogen Release as the Origin of "Permanent" NBTI Degradation: From Single Defects to Lifetimes”. In: 2015 IEEE International Electron Devices Meeting (IEDM). IEEE. IEEE, Dec. 2015, pp. 20–1. doi: 10.1109/iedm.2015.7409739.

  • [71] E. Cartier, J. H. Stathis, and D. A. Buchanan. “Passivation and Depassivation of Silicon Dangling Bonds at the Si/SiO2 Interface by Atomic Hydrogen”. In: Applied Physics Letters 63.11 (1993), pp. 1510–1512. doi: 10.1063/1.110758.

  • [72] E. Cartier, D. A. Buchanan, J. H. Stathis, and D. J. DiMaria. “Atomic Hydrogen-Induced Degradation of Thin SiO2 Gate Oxides”. In: Journal of Non Crystalline Solids 187 (1995), pp. 244–247. doi: 10.1016/0022-3093(95)00143-3.

  • [73] A. Yokozawa and Y. Miyamoto. “First-Principles Calculations for Charged States of Hydrogen Atoms in SiO2 ”. In: Physical Review B 55.20 (1997), p. 13783. doi: 10.1103/PhysRevB.55.13783.

  • [74] T. Grasser, K. Rott, H. Reisinger, M. Waltl, P. Wagner, F. Schanovsky, W. Goes, G. Pobegen, and B. Kaczer. “Hydrogen-Related Volatile Defects as the Possible Cause for the Recoverable Component of NBTI”. In: 2013 IEEE International Electron Devices Meeting. IEEE, Dec. 2013, pp. 15–5. doi: 10.1109/iedm.2013.6724637.

  • [75] D. L. Griscom. “Diffusion of Radiolytic Molecular Hydrogen As a Mechanism for the Post-irradiation Buildup of Interface States in SiO2 -on-Si Structures”. In: 58 (1985), pp. 2524–2533. issn: 0021-8979. doi: 10.1063/1.335931.

  • [76] T. Grasser, M. Waltl, G. Rzepa, W. Goes, Y. Wimmer, A. El-Sayed, A. Shluger, H. Reisinger, and B. Kaczer. “The "Permanent" Component of NBTI Revisited: Saturation, Degradation-Reversal, and Annealing”. In: 2016 IEEE International Reliability Physics Symposium (IRPS). IEEE, Apr. 2016, 5A–2. doi: 10.1109/irps.2016.7574504.

  • [77] D. Waldhoer, A.-M. B. El-Sayed, Y. Wimmer, M. Waltl, and T. Grasser. “Atomistic Modeling of Oxide Defects”. In: Noise in Nanoscale Semiconductor Devices. Springer International Publishing, 2020, pp. 609–648. doi: 10.1007/978-3-030-37500-3_18.

  • [78] K. Binder, D. M. Ceperley, J.-P. Hansen, M. Kalos, D. Landau, D. Levesque, H. Mueller-Krumbhaar, D. Stauffer, and J.-J. Weis. Monte Carlo Methods in Statistical Physics. Vol. 7. Springer Science & Business Media, 2012. isbn: 978-3-642-03162-5. doi: 10.1007/978-3-642-03163-2.

  • [79] B. Kaczer, P. Roussel, T. Grasser, and G. Groeseneken. “Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices-Application to NBTI”. In: IEEE Electron Device Letters 31.5 (May 2010), pp. 411–413. doi: 10.1109/led.2010.2044014.

  • [80] L. W. Nagel and D. O. Pederson. SPICE (Simulation Program with Integrated Circuit Emphasis). Tech. rep. EECS Department, University of California, Berkeley, 1973. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html.

  • [81] B. Kaczer, T. Grasser, P. J. Roussel, J. Franco, R. Degraeve, L. .-. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger. “Origin of NBTI Variability in Deeply Scaled pFETs”. In: 2010 IEEE International Reliability Physics Symposium. May 2010, pp. 26–32. doi: 10.1109/IRPS.2010.5488856.

  • [82] P. Weckx, B. Kaczer, J. Franco, P. J. Roussel, E. Bury, A. Subirats, G. Groeseneken, F. Catthoor, D. Linten, P. Raghavan, and A. Thean. “Defect-centric Perspective of Combined BTI and RTN Time-dependent Variability”. In: 2015 IEEE International Integrated Reliability Workshop (IIRW). Oct. 2015, pp. 21–28. doi: 10.1109/IIRW.2015.7437060.

  • [83] P. Weckx, B. Kaczer, C. Chen, J. Franco, E. Bury, K. Chanda, J. Watt, P. J. Roussel, F. Catthoor, and G. Groeseneken. “Characterization of Time-dependent Variability using 32k Transistor Arrays in an Advanced HK/MG Technology”. In: 2015 IEEE International Reliability Physics Symposium. Apr. 2015, 3B.1.1–3B.1.6. doi: 10.1109/IRPS.2015.7112702.

  • [84] B. Kaczer, J. Franco, P. Weckx, P. J. Roussel, V. Putcha, E. Bury, M. Simicic, A. Chasin, D. Linten, B. Parvais, et al. “A Brief Overview of Gate Oxide Defect Properties and their Relation to MOSFET Instabilities and Device and Circuit Time-Dependent Variability”. In: Microelectronics Reliability 81 (Feb. 2018), pp. 186–194. doi: 10.1016/j.microrel.2017.11.022.

  • [85] B. Ullmann, K. Puschkarsky, M. Waltl, H. Reisinger, and T. Grasser. “Evaluation of Advanced MOSFET Threshold Voltage Drift Measurement Techniques”. In: IEEE Transactions on Device and Materials Reliability 19.2 (2019), pp. 358–362. doi: 10.1109/TDMR.2019.2909993.

  • [86] A. L. McWhorter. “1/f Noise and Related Surface Effects in Germanium”. PhD thesis. Massachusetts Institute of Technology, 1955.

  • [87] H. Mikoshiba. “1/f Noise in n-Channel Silicon-gate MOS Transistors”. In: IEEE Transactions on Electron Devices 29.6 (June 1982), pp. 965–970. issn: 0018-9383. doi: 10.1109/T-ED.1982.20815.

  • [88] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant. “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1f ) Noise”. In: Physical Review Letters 52 (3 Jan. 1984), pp. 228–231. doi: 10.1103/PhysRevLett.52.228.

  • [89] T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, and B. Kaczer. “A Unified Perspective of RTN and BTI”. In: 2014 IEEE International Reliability Physics Symposium. June 2014, 4A.5.1–4A.5.7. doi: 10.1109/IRPS.2014.6860643.

  • [90] S. Machlup. “Noise in Semiconductors: Spectrum of a Two-Parameter Random Signal”. In: Journal of Applied Physics 25.3 (1954), pp. 341–343. doi: 10.1063/1.1721637.

  • [91] H. Reisinger. “The Time-Dependent Defect Spectroscopy”. In: Bias Temperature Instability for Devices and Circuits. Springer, 2014, pp. 75–109. doi: 10.1007/978-1-4614-7909-3_4.

  • [92] G. Kapila and V. Reddy. “Impact of Sampling Rate on RTN Time Constant Extraction and its Implications on Bias Dependence and Trap Spectroscopy”. In: IEEE Transactions on Device and Materials Reliability 14.2 (2014), pp. 616–622. doi: 10.1109/TDMR.2014.2305972.

  • [93] C.-Y. Chen, Q. Ran, H.-J. Cho, A. Kerber, Y. Liu, M.-R. Lin, and R. W. Dutton. “Correlation of Id- and Ig-Random Telegraph Noise to Positive Bias Temperature Instability in Scaled High-κ/Metal Gate n-Type MOSFETs”. In: 2011 International Reliability Physics Symposium. IEEE. 2011, 3A–2. doi: 10.1109/IRPS.2011.5784475.

  • [94] M. Toledano-Luque, B. Kaczer, E. Simoen, R. Degraeve, J. Franco, P. J. Roussel, T. Grasser, and G. Groeseneken. “Correlation of Single Trapping and Detrapping Effects in Drain and Gate Currents of Nanoscaled nFETs and pFETs”. In: 2012 IEEE International Reliability Physics Symposium (IRPS). Apr. 2012, XT.5.1–XT.5.6. doi: 10.1109/IRPS.2012.6241935.

  • [95] F. Crupi, G. Giusi, G. Iannaccone, P. Magnone, C. Pace, E. Simoen, and C. Claeys. “Analytical Model for the 1/f Noise in the Tunneling Current through Metal-Oxide-Semiconductor Structures”. In: Journal of Applied Physics 106.7 (2009), p. 073710. doi: 10.1063/1.3236637.

  • [96] B. Kaczer, T. Grasser, J. Roussel, J. Martin-Martinez, R. O’Connor, B. O’sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing–New Evaluation and Insights”. In: 2008 IEEE International Reliability Physics Symposium. IEEE. 2008, pp. 20–27. doi: 10.1109/RELPHY.2008.4558858.

  • [97] M. Denais, C. Parthasarathy, G. Ribes, Y. Rey-Tauriac, N. Revil, A. Bravaix, V. Huard, and F. Perrier. “On-the-fly Characterization of NBTI in Ultra-thin Gate Oxide PMOSFET’s”. In: IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004.. IEEE. 2004, pp. 109–112. doi: 10.1109/IEDM.2004.1419080.

  • [98] T. Grasser, P.-J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer. “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 526–535. doi: 10.1109/tdmr.2008.2002353.

  • [99] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “On the Subthreshold Drain Current Sweep Hysteresis of 4H-SiC nMOSFETs”. In: 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, Dec. 2016, pp. 10–8. doi: 10.1109/iedm.2016.7838392.

  • [100] R. Castagne and A. Vapaille. “Description of the SiO2 -Si Interface Properties by Means of Very Low Frequency MOS Capacitance Measurements”. In: Surface Science 28.1 (1971), pp. 157–193. doi: 10.1016/0039-6028(71)90092-6.

  • [101] L. M. Terman. “An Investigation Of Surface States at a Silicon/Silicon Oxide Interface employing Metal-Oxide-Silicon Diodes”. In: Solid-State Electronics 5.5 (1962), pp. 285–299. issn: 0038-1101. doi: https://doi.org/10.1016/0038-1101(62)90111-9.

  • [102] C. N. Berglund. “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces”. In: IEEE Transactions on Electron Devices 10 (1966), pp. 701–705. doi: 10.1109/T-ED.1966.15827.

  • [103] J. S. Brugler and P. G. A. Jespers. “Charge Pumping in MOS Devices”. In: IEEE Transactions on Electron Devices 16.3 (Mar. 1969), pp. 297–302. issn: 0018-9383. doi: 10.1109/T-ED.1969.16744.

  • [104] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker. “A Reliable Approach to Charge-Pumping Measurements in MOS Transistors”. In: IEEE Transactions on Electron Devices 31.1 (Jan. 1984), pp. 42–53. issn: 0018-9383. doi: 10.1109/T-ED.1984.21472.

  • [105] D. K. Schroder. Semiconductor Material and Device Characterization. New York: John Wiley & Sons, 2015. isbn: 978-0-471-73906-7.

  • [106] D. V. Lang. “Deep-level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors”. In: Journal of Applied Physics 45.7 (1974), pp. 3023–3032. doi: 10.1063/1.1663719.

  • [107] K. L. Wang and A. O. Evwaraye. “Determination of Interface and Bulk-trap States of IGFET’s using Deep-level Transient Spectroscopy”. In: Journal of Applied Physics 47.10 (1976), pp. 4574–4577. doi: 10.1063/1.322381.

  • [108] A. Neugroschel, C.-T. Sah, K. M. Han, M. S. Carroll, T. Nishida, J. T. Kavalieros, and Y. Lu. “Direct-Current Measurements of Oxide and Interface Traps on Oxidized Silicon”. In: IEEE Transactions on Electron Devices 42.9 (1995), pp. 1657–1662. doi: 10.1109/16.405281.

  • [109] J. G. Simmons and H. A. Mar. “Thermal Bulk Emission and Generation Statistics and Associated Phenomena in Metal-Insulator-Semiconductor Devices under Non-Steady-State Conditions”. In: Physical Review B 8.8 (1973), p. 3865. doi: 10.1103/PhysRevB.8.3865.

  • [110] P. J. Caplan, E. H. Poindexter, B. E. Deal, and R. R. Razouk. “ESR Centers, Interface States, and Oxide Fixed Charge in Thermally Oxidized Silicon Wafers”. In: Journal of Applied Physics 50.9 (1979), pp. 5847–5854. doi: 10.1063/1.326732.

  • [111] F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian, and A. Madhukar. “High-Resolution X-Ray Photoelectron Spectroscopy as a Probe of Local Atomic Structure: Application to Amorphous SiO2 and the Si-SiO2 Interface”. In: Physical Review Letters 43.22 (1979), p. 1683. doi: 10.1103/PhysRevLett.43.1683.

  • [112] B. V. Crist. Example of a "Wide Scan Survey Spectrum" using XPS. Used to Determine what Elements Are and Are Not Present.. [Online; accessed 10-June-2020], https://creativecommons.org/licenses/by-sa/2.5/legalcode. 2006. url: https://commons.wikimedia.org/wiki/File:Wide.jpg.

  • [113] T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, and H. Hutter. “Impact of Hydrogen on Recoverable and Permanent Damage Following Negative Bias Temperature Stress”. In: 2010 IEEE International Reliability Physics Symposium. IEEE. IEEE, 2010, pp. 1063–1068. doi: 10.1109/irps.2010.5488672.

  • [114] J. J. Thomson. “LXXXIII. Rays of Positive Electricity”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20.118 (1910), pp. 752–767. doi: 10.1080/14786441008636962.

  • [115] R. F. K. Herzog and F. P. Viehböck. “Ion Source for Mass Spectrography”. In: Physical Review 76.6 (1949), pp. 855–856. doi: 10.1103/PhysRev.76.855.

  • [116] R. R. Greenberg, P. Bode, and E. A. D. N. Fernandes. “Neutron Activation Analysis: A Primary Method of Measurement”. In: Spectrochimica Acta Part B: Atomic Spectroscopy 66.3 (2011), pp. 193–241. issn: 0584-8547. doi: 10.1016/j.sab.2010.12.011.

  • [117] Y. Yuzhelevski, M. Yuzhelevski, and G. Jung. “Random Telegraph Noise Analysis in Time Domain”. In: Review of Scientific Instruments 71.4 (2000), pp. 1681–1688. doi: 10.1063/1.1150519.

  • [118] T. Nagumo, K. Takeuchi, S. Yokogawa, K. Imai, and Y. Hayashi. “New Analysis Methods for Comprehensive Understanding of Random Telegraph Noise”. In: Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE. IEEE, Dec. 2009, pp. 1–4. doi: 10.1109/iedm.2009.5424230.

  • [119] J. Martin-Martinez, J. Diaz, R. Rodriguez, M. Nafria, and X. Aymerich. “New Weighted Time Lag Method for the Analysis of Random Telegraph Signals”. In: IEEE Electron Device Letters 35.4 (Apr. 2014), pp. 479–481. issn: 0741-3106. doi: 10.1109/LED.2014.2304673.

  • [120] W. A. Taylor. Change-point Analysis: A Powerful New Tool for Detecting Changes. 2000.

  • [121] M. Waltl, P.-J. Wagner, H. Reisinger, K. Rott, and T. Grasser. “Advanced Data Analysis Algorithms for the Time-Dependent Defect Spectroscopy of NBTI”. In: 2012 IEEE International Integrated Reliability Workshop Final Report. IEEE, Oct. 2012, pp. 74–79. doi: 10.1109/iirw.2012.6468924.

  • [122] J. Canny. “A Computational Approach to Edge Detection”. In: Readings in Computer Vision. Elsevier, 1987, pp. 184–203. doi: 10.1016/b978-0-08-051581-6.50024-6.

  • [123] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. “A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains”. In: The Annals of Mathematical Statistics 41.1 (1970), pp. 164–171. doi: 10.1214/aoms/1177697196.

  • [124] L. E. Baum et al. An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes. 1972.

  • [125] D. J. Frank and H. Miki. “Analysis of Oxide Traps in Nanoscale MOSFETs Using Random Telegraph Noise”. In: Bias Temperature Instability for Devices and Circuits. Springer, 2014, pp. 111–134. doi: 10.1007/978-1-4614-7909-3_5.

  • [126] Z. Ghahramani and M. I. Jordan. “Factorial Hidden Markov Models”. In: Advances in Neural Information Processing Systems. 1996, pp. 472–478.

  • [127] F. M. Puglisi and P. Pavan. “Factorial Hidden Markov Model Analysis of Random Telegraph Noise in Resistive Random Access Memories”. In: ECTI Transactions on Electrical Engineering, Electronics, and Communications 12.1 (2014), pp. 24–29.

  • [128] R. Weiss, S. Du, J. Grobler, S. Lebedev, and G. Varoquaux. hmmlearn 0.2.2. 2017.

  • [129] J. Schreiber. “Pomegranate: Fast and Flexible Probabilistic Modeling in Python”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 5992–5997.

  • [130] P. H. C. Eilers. “A Perfect Smoother”. In: Analytical chemistry 75.14 (2003), pp. 3631–3636. doi: 10.1021/ac034173t.

  • [131] W. S. Cleveland. “Robust Locally Weighted Regression and Smoothing Scatterplots”. In: Journal of the American statistical association 74.368 (1979), pp. 829–836. doi: 10.1080/01621459.1979.10481038.

  • [132] T. Nagumo, K. Takeuchi, T. Hase, and Y. Hayashi. “Statistical Characterization of Trap Position, Energy, Amplitude and Time Constants by RTN Measurement of Multiple Individual Traps”. In: Electron Devices Meeting (IEDM), 2010 IEEE International. IEEE. IEEE, Dec. 2010, pp. 28–3. doi: 10.1109/iedm.2010.5703437.

  • [133] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng. “A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors”. In: IEEE Transactions on Electron Devices 37.3 (1990), pp. 654–665. doi: 10.1109/16.47770.

  • [134] S. Villa, G. De Geronimo, A. Pacelli, A. L. Lacaita, and A. Longoni. “Application of 1/f Noise Measurements to the Characterization of Near-interface Oxide Traps in ULSI n-MOSFETs”. In: Microelectronics Reliability 38.12 (1998), pp. 1919–1923. doi: 10.1016/S0026-2714(98)00069-9.

  • [135] T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, and B. Kaczer. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: IEEE Int. Reliab. Phys. Symp. Proc.. IEEE, 2010, pp. 16–25. doi: 10.1109/irps.2010.5488859.

  • [136] P. V. Gray and D. M. Brown. “Density of SiO2 –Si Interface States”. In: Applied Physics Letters 8.2 (1966), pp. 31–33. doi: 10.1063/1.1754468.

  • [137] G. T. Sasse, F. G. Kuper, and J. Schmitz. “MOSFET Degradation Under RF Stress”. In: IEEE Transactions on Electron Devices 55.11 (2008), pp. 3167–3174. doi: 10.1109/TED.2008.2004650.

  • [138] E. H. Nicollian and A. Goetzberger. “MOS Conductance Technique for Measuring Surface State Parameters”. In: Applied Physics Letters 7.8 (1965), pp. 216–219. doi: 10.1063/1.1754385.

  • [139] E. H. Nicollian and A. Goetzberger. “The Si-SiO, Interface–Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique”. In: The Bell System Technical Journal 46.6 (1967), pp. 1055–1033. doi: 10.1002/j.1538-7305.1967.tb01727.x.

  • [140] A. Oshima, T. Komawaki, K. Kobayashi, R. Kishida, P. Weckx, B. Kaczer, T. Matsumoto, and H. Onodera. “Physical-based RTN Modeling of Ring Oscillators in 40-nm SiON and 28-nm HKMG by Bimodal Defect-Centric Behaviors”. In: 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, Sept. 2016, pp. 327–330. doi: 10.1109/sispad.2016.7605213.

  • [141] M. Simicic, V. Putcha, B. Parvais, P. Weckx, B. Kaczer, G. Groeseneken, G. Gielen, D. Linten, and A. Thean. “Advanced MOSFET Variability and Reliability Characterization Array”. In: 2015 IEEE International Integrated Reliability Workshop (IIRW). IEEE. IEEE, Oct. 2015, pp. 73–76. doi: 10.1109/iirw.2015.7437071.

  • [142] A. Kerber, K. Maitra, A. Majumdar, M. Hargrove, R. J. Carter, and E. A. Cartier. “Characterization of Fast Relaxation During BTI Stress in Conventional and Advanced CMOS Devices With HfO2 /TiN Gate Stacks”. In: IEEE Transactions on Electron Devices 55.11 (2008), pp. 3175–3183. doi: 10.1109/TED.2008.2004853.

  • [143] A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin. “Probing Excitonic States in Suspended Two-Dimensional Semiconductors by Photocurrent Spectroscopy”. In: Scientific Reports 4.1 (Oct. 2014), p. 6608. doi: 10.1038/srep06608.

  • [144] F. A. Rasmussen and K. S. Thygesen. “Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides”. In: Journal of Physical Chemistry C 119.23 (June 2015), pp. 13169–13183. doi: 10.1021/acs.jpcc.5b02950.

  • [145] Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller, and T. Grasser. “The Role of Charge Trapping and MoS2 /SiO2 and MoS2 /hBN Field-Effect Transistors”. In: 2D Materials 3 (2016), p. 035004. doi: 10.1088/2053-1583/3/3/035004.

  • [146] Y. Y. Illarionov, A. D. Smith, S. Vaziri, M. Ostling, T. Mueller, M. C. Lemme, and T. Grasser. “Bias-Temperature Instability in Single-Layer Graphene Field-Effect Transistors”. In: Applied Physics Letters 105.14 (Oct. 2014), p. 143507. doi: 10.1063/1.4897344.

  • [147] Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin, C. Guan, Y. Han, S. Gao, and Q. Chen. “Charge Trapping at the MoS2 -SiO2 Interface and Its Effects on the Characteristics of MoS2 Metal-Oxide-Semiconductor Field Effect Transistors”. In: Applied Physics Letters 106.10 (Mar. 2015), p. 103109. doi: 10.1063/1.4914968.

  • [148] Y. Park, H. W. Baac, J. Heo, and G. Yoo. “Thermally Activated Trap Charges Responsible for Hysteresis in Multilayer MoS2 Field-Effect Transistors”. In: Applied Physics Letters 108.8 (Feb. 2016), p. 083102. doi: 10.1063/1.4942406.

  • [149] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao. “Hysteresis in Single-Layer MoS2 Field Effect Transistors”. In: ACS Nano 6.6 (2012), pp. 5635–5641. doi: 10.1021/nn301572c.

  • [150] S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller. “High Performance Multilayer MoS2 Transistors with Scandium Contacts”. In: Nano Letters 13 (2013), pp. 100–105. doi: 10.1021/nl303583v.

  • [151] J. Appenzeller, F. Zhang, S. Das, and J. Knoch. “Transition Metal Dichalcogenide Schottky Barrier Transistors”. In: 2D Mater. Nanoelectron. 17 (2016), p. 207. doi: 10.1201/b19623-11.