[1] International technology roadmap for semiconductors (ITRS). 2013. http://www.itrs.net/reports.html.
[2] Andricacos, P., Uzoh, C., Dukovic, J., Horkans, J., and Deligianni, H. Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 5 (1998), 567-574.
[3] ASHCROFT, N., and Mermin, N. Solid state physics. Saunders College, Philadelphia, 1976.
[4] Basaran, C., and Lin, M. Damage mechanics of electromigration induced failure. Intl. J. Solids Struct. 40, 1-2 (2008), 66-79.
[5] Basaran, C., Lin, M., and Ye, H. A thermodynamic model for electrical current induced damage. Intl. J. Solids Struct. 40, 26 (2003), 7315-7327.
[6] Bathe, K.-J., and Wilson, E. L. Numerical methods in finite element analysis.
[7] Beyne, E. 3D system integration technologies. In Intl. Symposium on VLSI Technology, Systems, and Applications (2006), pp. 1-9.
[8] Bhate, D. N., Bower, A. F., and Kumar, A. A phase field model for failure in interconnect lines due to coupled diffusion mechanisms. J. Mech. Phys. Solids 50, 10 (2002), 2057-2083.
[9] Bhate, D. N., Kumar, A., and Bower, A. F. Diffuse interface model for electromigration and stress voiding. J. Appl. Phys. 87, 4 (2000), 1712-1721.
[10] Black, J. R. Mass transport of aluminum by momentum exchange with conducting electrons. In Proc. Reliability Physics Symposium (1967), pp. 148-159.
[11] Black, J. R. Aluminum conductor failure by mass transport. In Proc. Intl. Congress on Microelectronics, Munich (1968), pp. 141-162.
[12] Black, J. R. Electromigration-A brief survey and some recent results. IEEE Trans. Electron Devices 16, 4 (1969), 338-347.
[13] Black, J. R. Electromigration failure modes in aluminum metallization for semiconductor devices. Proc. IEEE 57, 9 (1969), 1587-1594.
[14] Blech, I. A. Electromigration in thin aluminum films on titanium nitride. Appl. Phys. 47, 4 (1976), 1203-1208.
[15] Bly, D. N., and Rous, P. J. Theoretical study of the electromigration wind force for adatom migration at metal surfaces. Phys. Rev. B 53 (May 1996), 13909- 13920.
[16] Bowley, R., and Sánchez, M. Introductory statistical mechanics. Clarendon Press Oxford, 1999.
[17] Brenner, S. C., and Scott, R. The mathematical theory of finite element methods, vol. 15. Springer Science & Business Media, 2008.
[18] Cacho, F., Fiori, V., Chappaz, C., Tavernier, C., and Jaouen, H. Modeling of electromigration induced failure mechanism in semiconductor devices. Proc. COMSOL Users Conference, Grenoble (2007).
[19] Cahn, J. W., and Hilliard, J. E. Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 2 (1958), 258-267.
[20] Cassidy, C., Kraft, J., Carniello, S., Roger, F., Ceric, H., Singulani, A., Langer, E., and Schrank, F. Through silicon via reliability. IEEE Trans. Device Mat. . 12, 2 (2012), 285-295.
[21] Ceric, H., de Orio, R. L., Cervenka, J., and Selberherr, S. A comprehensive TCAD approach for assessing electromigration reliability of modern interconnects. IEEE Trans. Dev. Mat. . 9, 1 (2009), 9-19.
[22] Ceric, H., and Selberherr, S. Electromigration in submicron interconnect features of integrated circuits. Mater. Sci. Eng. -Rep. 71, 5-6 (2011), 53-86.
[23] Chang, C., Wang, Y.-F., Kanamori, Y., Shih, J.-J., Kawai, Y., Lee, C.-K., , K.-C., and Esashi, M. Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures. J. Micromech. Microeng. 15, 3 (2005), 580.
[24] Choa, S. H. Experimental studies of through-wafer copper interconnect in wafer level MEMS packaging. In Key Engineering Materials (2006), vol. 324, Trans. Tech. Publ., pp. 231-234.
[25] Clemens, B. M., Nix, W. D., and Gleixner, R. J. Void nucleation on a contaminated patch. J. Mater. Res. 12 (1997), 2038-2042.
[26] Clement, J. J. Reliability analysis for encapsulated interconnect lines under DC and pulsed DC current using a continuum electromigration transport model. Appl. Phys. 82, 12 (1997), 5991-6000.
[27] Clement, J. J. Electromigration modeling for integrated circuit interconnect reliability analysis. IEEE Trans. Dev. Mat. . 1, 1 (2001), 33-42.
[28] Clement, J. J., and Lloyd, J. R. Numerical investigations of the electromigration boundary value problem. J. Appl. Phys. 71, 4 (1992), 1729-1731.
[29] Clement, J. J., and Thompson, C. V. Modeling electromigration-induced stress evolution in confined metal lines. J. Appl. Phys. 78, 2 (1995), 900-904.
[30] COMSOL Inc. COMSOL multiphysics . 2012. http://www.comsol.com/products/4.3a/.
[31] Craigie, C., Sheehan, T., Johnson, V., Burkett, S., Moll, A., and Knowlton, W. Polymer thickness effects on Bosch etch profiles. J. Vac. Sci. Technol. B 20, 6 (2002), 2229-2232.
[32] Crank, J. The mathematics of diffusion. Oxford university press, 1979.
[33] Datta, M., Osaka, T., and Schultze, J. W. Microelectronic packaging. CRC press, 2004.
[34] de Orio, R. L. Electromigration modeling and simulation. PhD thesis, Technische Universität Wien, 2010.
[35] de Orio, R. L., Ceric, H., and Selberherr, S. Physically based models of electromigration: From Black’s equation to modern TCAD models. Microelectron. Reliab. 50, 6 (2010), 775-789.
[36] Debnath, L. Nonlinear partial differential equations for scientists and engineers, third ed. Birkhäuser Basel, 2012.
[37] Dekker, J. P., Lodder, A., and van Ek, J. Theory for the electromigration wind force in dilute alloys. Phys. Rev. (1997), 12167-12177.
[38] Emmerich, H. The diffuse interface approach in materials science: Thermodynamic concepts and applications of phase-field models, vol. 73. Springer Science & Business Media, 2003.
[39] Emrick, R. M., and McArdle, P. B. Effect of pressure on quenched-In electrical resistance in gold and aluminum. Phys. Rev. 188 (1969), 1156-1162.
[40] Ertl, O., and Selberherr, S. Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectron. Eng. 87, 1 (2010), 20-29.
[41] Finnis, M. W., and Sachdev, M. Vacancy formation volumes in simple metals. J. Phys. F: Metal Physics 6, 6 (1976), 965.
[42] Fisher, J. C. Calculation of diffusion penetration curves for surface and grain boundary diffusion. J. Appl. Phys. 22, 1 (1951), 74-77.
[43] Flinn, P. A. Mechanical stress in VLSI interconnections: Origins, effects, measurement, and modeling. MRS Bulletin 20 (November 1995), 70-73.
[44] Frank, T., Chappaz, C., Leduc, P., Arnaud, L., Lorut, F., Moreau, S., Thuaire, A., El-Farhane, R., and Anghel, L. Resistance increase due to electromigration induced depletion under TSV. In Proc. Intl. Reliability Physics Symp. (2011), pp. 3F.4.1-3F.4.6.
[45] Freund, L. B., and Suresh, S. Thin film materials: Stress, defect formation and surface evolution. Cambridge University Press, 2004.
[46] Garrou, P., Bower, C., and Ramm, P. Handbook of integration: Volume 1-Technology and applications of integrated circuits. John Wiley & Sons, 2011.
[47] Garrou, P., Koyanagi, M., and Ramm, P. Handbook of integration: Volume 3-3D process technology. John Wiley & Sons, 2014.
[48] Gaskell, D. R. Introduction to the thermodynamics of materials. CRC Press, 2008.
[49] Gleixner, R. J., Clemens, B. M., and Nix, W. D. Void nucleation in passivated interconnect lines: Effects of site geometries, interfaces, and interface flaws. J. Mater. Res. 12 (1997), 2081-2090.
[50] Gleixner, R. J., and Nix, W. D. A physically based model of electromigration and stress-induced void formation in microelectronic interconnects. J. Appl. Phys. 86, 4 (1999), 1932-1944.
[51] Glicksman, M. Diffusion in solids: Field theory, solid-state principles, and applications. A Wiley-Interscience publication. Wiley, 1999.
[52] Grove, A. S., Leistiko, O., and Sah, C. T. Redistribution of acceptor and donor impurities during thermal oxidation of silicon. J. Appl. Phys. 35, 9 (1964), 2695-2701.
[53] Gurtin, M. E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D 92, 3-4 (1996), 178-192.
[54] Gurtin, M. E., and McFadden, G. B. On the evolution of phase boundaries, vol. 43. Springer Science & Business Media, 2012.
[55] Haasen, P. Physikalische Metallkunde. Springer Berlin Heidelberg, 1994.
[56] Hauschildt, M. Statistical analysis of electromigration lifetimes and void evo- lution in Cu interconnects. PhD thesis, The University of Texas at Austin, 2005.
[57] Herring, C. Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 5 (1950), 437-445.
[58] Herring, C. Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 4 (1950), 301-303.
[59] Ho, P. S., and Kwok, T. Electromigration in metals. Rep. Prog. Phys. 52, 3 (1989), 301.
[60] Hollauer, C. Modeling of thermal oxidation and stress effects. PhD thesis, Technische Universität Wien, 2007.
[61] Holzer, S. Optimization for enhanced thermal technology CAD purposes. PhD thesis, Technische Universität Wien, 2007.
[62] Holzer, S., Hollauer, C., Ceric, H., Wagner, S., Langer, E., Grasser, K.-T., and Selberherr, S. Transient electro-thermal investigations of interconnect structures exposed to mechanical stress. In Proc. Intl. Conf. on VLSI Circuits and Systems II (2005), pp. 380-387.
[63] Hopwood, J. Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5, 5 (1998), 1624-1631.
[64] Huntington, H., and Grone, A. Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20, 1-2 (1961), 76-87.
[65] Ikegawa, M., and Kobayashi, J. Deposition profile simulation using the direct simulation Monte Carlo method. J. Electrochem. Soc. 136, 10 (1989), 2982-2986.
[66] Jackson, J. D. Classical electrodynamics, third ed. Wiley, 1998.
[67] Johnson, C. Numerical solution of partial differential equations by the finite element method. Courier Corporation, 2012.
[68] Johnson, C., Nävert, U., and Pitkäranta, J. Finite element methods for linear hyperbolic problems. Computer methods in applied mechanics and engineer- ing 45, 1 (1984), 285-312.
[69] Kaanta, C., Bombardier, S., Cote, W., Hill, W., Kerszykowski, G., Landis, H., Poindexter, D., Pollard, C., Ross, G., Ryan, J., Wolff, S., and Cronin, J. E. Dual damascene: A ULSI wiring technology. In Proc. Intl. IEEE VLSI Multilevel Interconnection Conference (1991), pp. 144-152.
[70] Kaltenbacher, M. Numerical simulation of mechatronic sensors and actuators. Springer-Verlag Berlin Heidelberg, 2007.
[71] Khan, N., and Hassoun, S. Designing TSVs for integrated circuits. Springer Science & Business Media, 2012.
[72] Kim, D., and Lu, W. Creep flow, diffusion, and electromigration in small scale interconnects. J. Mech. Phys. Solids 54, 12 (2006), 2554-2568.
[73] Kim, J. Y. Investigation on the mechanism of interface electromigration in copper Cu thin films. PhD thesis, The University of Texas at Arlington, 2007.
[74] Kirchheim, R. Zur Lösung des 2. Fickschen Gesetzes unter nicht-isothermen Bedingungen in Gegenwart von äußeren Kräften. Phys. Status Solidi B 91, 1 (1979), 123-134.
[75] Kirchheim, R. Stress and electromigration in Al-lines of integrated circuits. Acta. Metall. Mater. 40, 2 (1992), 309-323.
[76] Kirchheim, R. Modelling electromigration and induced stresses in aluminum lines. In Proc. M2- Materials Reliability in Microelectronics III (1993), vol. 309, pp. 101-110.
[77] Kirchheim, R., and Kaeber, U. Atomistic and computer modeling of metallization failure of integrated circuits by electromigration. J. Appl. Phys. 70, 1 (1991), 172-181.
[78] Kittel, C. Introduction to solid state physics, 6th ed. John Wiley & Sons, Inc., New York, 1986.
[79] Knechtel, R. Glass frit bonding: An universal technology for wafer level encapsulation and packaging. Microsys. Technol. 12, 1-2 (2005), 63-68.
[80] Knickerbocker, J., Andry, P., Dang, B., Horton, R., Patel, C., Polastre, R., Sakuma, K., Sprogis, E., Tsang, C., Webb, B., and Wright, S. 3D silicon integration. In Proc. Electronic Components and Technology Conference (2008), pp. 538-543.
[81] Kondo, K., Akolkar, R. N., Barkey, D. P., and Yokoi, M. Copper Electrodeposition for Nanofabrication of Electronics Devices. Springer New York, 2014.
[82] Korhonen, M. A., Børgesen, P., Tu, K. N., and Li, C. Stress evolution due to electromigration in confined metal lines. J. Appl. Phys. 73, 8 (1993), 3790- 3799.
[83] Kraft, J., Schrank, F., Teva, J., Siegert, J., Koppitsch, G., Cassidy, C., Wachmann, E., Altmann, F., Brand, S., Schmidt, C., and Petzold, M. 3D sensor application with open through silicon via technology. Proc. Elec. Comp. (2011), 560-566.
[84] Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 6 (1957), 570-586.
[85] Laermer, F., and Schilp, A. Verfahren zum anisotropen Ätzen von Silicium. A method for anisotropic etching of silicon, May 261994. DE Patent 4,241,045.
[86] Landauer, R. The Das-Peierls electromigration theorem. J. Phys. C 8, 19 (1975), L389.
[87] Landauer, R. Geometry and boundary conditions in the das-peierls electromigration theorem. Phys. Rev. B 16 (1977), 4698-4702.
[88] Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). J. Math. Phys. 37, 10 (1996), 5259-5268.
[89] Landauer, R., and Woo, J. W. F. Driving force in electromigration. Phys. Rev. B 10 (1974), 1266-1271.
[90] Lau, F., Mader, L., Mazure, C., Werner, C., and Orlowski, M. A model for phosphorus segregation at the silicon-silicon dioxide interface. Appl. Phys. A 49, 6 (1989), 671-675.
[91] Li, C.-Y., Børgesen, P., and Korhonen, M. A. Electromigration-induced failure in passivated aluminum-based metallizations– The dependence on temperature and current density. Appl. Phys. Lett. 61, 4 (1992), 411-413.
[92] Li, Y. Microelectronic applications of chemical mechanical planarization. John Wiley & Sons, 2007.
[93] Lloyd, J. R. Reliability modelling for electromigration failure. Qual. Reliab. Eng. Int. 10, 4 (1994), 303-308.
[94] Lloyd, J. R. Electromigration in thin film conductors. Semicond. Sci. Tech. 12, 10 (1997), 1177.
[95] Lloyd, J. R. Electromigration for designers: An introduction for the non-specialist. 1-16.
http://eetimes.com/design/edadesign/4017969/Electromigration-for-Designers-An-Introdroction for the Non-Specialist.
[96] Lodder, A. The driving force in electromigration. Physica 158, 3 (1989), 723-739.
[97] MacLaren, J. M., Crampin, S., Vvedensky, D. D., and Pendry, J. B. Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties. Phys. Rev. B 40 (1989), 12164-12175.
[98] Maclaren, J. M., Zhang, X.-G., Butler, W. H., and Wang, X. Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling. Phys. Rev. B 59 (1999), 5470-5478.
[99] Mahadevan, M., and Bradley, R. Phase field model of surface electromigration in single crystal metal thin films. Physica D 126, 3-4 (1999), 201-213.
[100] Mehrer, H. Diffusion in Solids, vol. 155 of Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 2007.
[101] Mizutani, U. Introduction to the electron theory of metals. Cambridge University Press, 2001.
[102] Nabarro, F. R. N. Theory of crystal dislocations. Clarendon Press, 1967.
[103] Naka, Y. Introduction to VLSI process engineering. Springer Science & Business Media, 1993.
[104] Nowick, A. S., and Burton, J. J. Diffusion in solids: Recent developments. Academic Press., New York, 1975.
[105] Ohno, K., Esfarjani, K., and Kawazoe, Y. Computational materials science: from ab initio to Monte Carlo methods, vol. 129. Springer Science & Business Media, 2012.
[106] Oono, Y., and Puri, S. Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38 (1988), 434-453.
[107] Pierce, D., and Brusius, P. Electromigration: A review. Microelectron. Reliab. 37, 7 (1997), 1053-1072. Reliability Physics of Advanced Electron Devices.
[108] Ramm, P., Lu, J. J.-Q., and Taklo, M. M. Handbook of wafer bonding. John Wiley & Sons, 2012.
[109] Reinhardt, K., and Kern, W. Handbook of silicon wafer cleaning technology. William Andrew, 2008.
[110] Rosenberg, R., and Ohring, M. Void formation and growth during electromigration in thin films. J. Appl. Phys. 42, 13 (1971), 5671-5679.
[111] Rous, P. Theory of surface electromigration on heterogeneous metal surfaces. Appl. Surf. Sci. 175-176, (2001), 212-217.
[112] Rous, P. J. Electromigration wind force at stepped Al surfaces. Phys. Rev. 59 (1999), 7719-7723.
[113] Rous, P. J., and Bly, D. N. Wind force for adatom electromigration on heterogeneous surfaces. Phys. Rev. B 62 (2000), 8478-8486.
[114] Ru, C. Thermomigration as a driving force for instability of electromigration induced mass transport in interconnect lines. J. Mater. Sci. 35, 22 (2000), 5575- 5579.
[115] Sabelka, R. Dreidimensionale Finite Elemente Simulation von Verdrahtungsstrukturen auf Integrierten Schaltungen. thesis, Technische Universität Wien, 2001.
[116] Sarychev, M. E., Zhitnikov, Y. V., Borucki, L., Liu, C.-L., and Makhviladze, T. M. General model for mechanical stress evolution during electromigration. J. Appl. Phys. 86, 6 (1999), 3068-3075.
[117] Schaich, W. L. Theory of the driving force for electromigration. Phys. Rev. 13 (1976), 3350-3359.
[118] Schoenmaker, W., and Petrescu, V. Modeling electromigration as a fluid-gas system. Microelectron. Reliab. 39, 11 (1999), 1667-1676.
[119] Schwartz, G. C., and Srikrishnan, K. V. Handbook of semiconductor interconnection technology. CRC Press, 2006.
[120] Seith, W., and Wever, H. Die Aktivität bei der Diffusion in metallischen Dreistoffsystemen. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 55, 5 (1951), 380-384.
[121] Selberherr, S. Analysis and simulation of semiconductor devices. Springer Wien, 1984.
[122] Selvanayagam, C., Lau, J., Zhang, X., Seah, S., Vaidyanathan, K., and Chai, T. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE Trans. . Packaging 32, 4 (2009), 720-728.
[123] Seshan, K. Handbook of thin film deposition. William Andrew, 2012.
[124] Sham, L. J. Microscopic theory of the driving force in electromigration. Phys. Rev. B 12 (1975), 3142-3149.
[125] Shatzkes, M., and Huang, Y. Characteristic length and time in electromigration. J. Appl. Phys. 74, 11 (1993), 6609-6614.
[126] Shatzkes, M., and Lloyd, J. R. A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2. J. Appl. Phys. 59, 11 (1986), 3890-3893.
[127] Skriver, H. L. The LMTO method: muffin-tin orbitals and electronic structure, vol. 41. Springer Science & Business Media, 2012.
[128] Sorbello, R. Landauer fields in electron transport and electromigration. Superlattices Microstruct. 23, 3-4 (1998), 711-718.
[129] Sorbello, R. S. Residual-resistivity dipole in electron transport and electromigration. Phys. Rev. B 23 (1981), 5119-5127.
[130] Sorbello, R. S. Theory of the direct force in electromigration. Phys. Rev. B 31 (1985), 798-804.
[131] Sorbello, R. S. Microscopic driving forces for electromigration. Proc. Mater. Research Soc. Symp. 427 (1996), 73-81.
[132] Sorbello, R. S., Lodder, A., and Hoving, S. J. Finite-cluster description of electromigration. Phys. Rev. B 2 (1982), 6178-6187.
[133] Sørensen, M. R., Mishin, Y., and Voter, A. F. Diffusion mechanisms in Cu grain boundaries. Phys. Rev. B 62 (2000), 3658-3673.
[134] Strong, A. W., Wu, E. Y., Vollertsen, R.-P., Sune, J., La Rosa, G., Sullivan, T. D., and Rauch III, S. E. Reliability wearout mechanisms in advanced CMOS technologies, vol. 12. John Wiley & Sons, 2009.
[135] Suhir, E. Accelerated life testing (ALT) in microelectronics and photonics: Its role, attributes, challenges, pitfalls, and interaction with qualification tests. Electron. Packaging 124 (2002), 281-291.
[136] Sukharev, V., Choudhury, R., and Park, C. Physically-based simulation of the early and long-term failures in the copper dual damascene interconnect. In IRWS (2003), pp. 80-85.
[137] Sukharev, V., Kteyan, A., and Zschech, E. Physics-based models for EM and SM simulation in three-dimensional IC structures. IEEE Trans. Device Mater. . 12, 2 (2012), 272-284.
[138] Sukharev, V., and Zschech, E. A model for electromigration-induced degradation mechanisms in dual-inlaid copper interconnects: Effect of interface bonding strength. J. Appl. Phys. 96 (2004), 6337-6343.
[139] Tan, C. M., and Roy, A. Electromigration in ULSI interconnects. Mater. Sci. Eng. -Rep. 58, 1-2 (2007), 1-75.
[140] Tan, C. S., Chen, K.-N., and Koester, S. J. integration for VLSI systems. CRC Press, 2011.
[141] Teschl, G. Mathematical methods in quantum mechanics, vol. 157. American Mathematical Soc., 2014.
[142] Thrasher, S., Capasso, C., Zhao, L., Hernandez, R., Mulski, P., Rose, S., Nguyen, T., and Kawasaki, H. Blech effect in single-inlaid Cu interconnects. In Proc. IEEE Intl. Interconnect Technology Conference (2001), pp. 177- 179.
[143] Tu, K. N. Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 9 (2003), 5451-5473.
[144] Van , J., Dekker, J. P., and Lodder, A. Electromigration of substitutional impurities in metals: Theory and application in Al and Cu. Phys. Rev. 52 (1995), 8794-8800.
[145] van Ek, J., and Lodder, A. Electromigration in transition metals. II. Light interstitials in Cu, Ag, Ni, Pd, Al, V, Nb and Ta. J. Phys. Condens. Matter 3, 38 (1991), 7331.
[146] Wetzig, K., and Schneider, C. M. Metal based thin films for electronics. Wiley Online Library, 2003.
[147] Wieting, T. J., and Schlüter, M. Electrons and phonons in layered crystal structures, vol. 3. Springer Science & Business Media, 2012.
[148] Wittmer, M. Barrier layers: Principles and applications in microelectronics. Vac. Sci. Technol. A 2, 2 (1984), 273-280.
[149] Wolf, S. Silicon processing for the VLSI era, volume 4- deep-submicron process technology, chapter 15. Sunset Beach, 2002.
[150] Zeidler, E. Springer-Taschenbuch der Mathematik. Springer Spektrum, 2013.
« PreviousUpNext »Contents