Computation of Torques
in Magnetic Tunnel Junctions
Chapter A Analytical Solution
In the presence of uniform current density and magnetization in the ferromagnetic layers, analytical expressions for the spin accumulation entering (6.38) can be derived. The generic form of \(\vb {S}\) in NM layers, with the left boundary located at \(x_\text {L}\) and right boundary at \(x_\text {R}\), is given by
\(\seteqnumber{0}{A.}{0}\)\begin{equation} \label {eq:spin_acc_nm_an} \vb {S} = \vb {A}_\text {L} \exp (-\frac {x-x_L}{\lambda _{\text {sf}}}) + \vb {A}_\text {R} \exp (\frac {x-x_R}{\lambda _{\text {sf}}}) \end{equation}
Here, \(\vb {A}_\text {L}\) and \(\vb {A}_\text {R}\) are vectors of real coefficients to be determined. In a ferromagnetic layer with magnetization pointing along x, the expressions for the three components of S are instead
\(\seteqnumber{1}{A.2}{0}\)\begin{gather} S_x = G_{\parallel \text {,L}} \exp (-\frac {x-x_\text {L}}{\lambda _\text {sdl}}) + G_{\parallel \text {,R}} \exp (\frac {x-x_\text {R}}{\lambda _\text {sdl}}) \\ S_y = 2 \, \text {Re} \, \pqty {G_{\perp \text {,L}} \exp (-\frac {x-x_\text {L}}{\lambda _\text {+}})} + 2 \, \text {Re} \, \pqty {G_{\perp \text {,R}} \exp (\frac {x-x_\text {R}}{\lambda _\text {+}})} \\ S_z = 2 \, \text {Im} \, \pqty {G_{\perp \text {,L}} \exp (-\frac {x-x_\text {L}}{\lambda _\text {+}})} + 2 \, \text {Im} \, \pqty {G_{\perp \text {,R}} \exp (\frac {x-x_\text {R}}{\lambda _\text {+}})} \end{gather} Here, \(G_{\parallel \text {,L}}\) and \(G_{\parallel \text {,R}}\) are real coefficients, while \(G_{\perp \text {,L}}\) and \(G_{\perp \text {,R}}\) are complex coefficients, to be determined, \(\lambda _{\text {sdl}}=\lambda _\text {sf}/\sqrt {1-\beta _{\sigma }\beta _{D}}\), and \(\lambda _{+}^{-1}=\sqrt {(1/\lambda _{\text {sf}})^2+(1/\lambda _{\varphi })^2-i(1/\lambda _\text {J})^2}\). The expressions can be generalized to a magnetization pointing in a general direction by multiplication with a rotation matrix. In the absence of a left or right boundary (i.e. in the presence of semi-infinite layers), the corresponding terms can be removed from the equations. The coefficients entering both (A.1) and (A.2) must be obtained by imposing boundary conditions at the interfaces between different materials, for both spin accumulation and spin current. Expressions for the spin current can be derived from \(\vb {S}\) by using (6.38b). The systems of equations presented here were all solved symbolically by employing Mathematica to produce the analytical results reported in the main text.
A.1 Five Layers N1|F1|C|F2|N2
The following equations describe continuity conditions for both the spin accumulation and current in a five layer structure, where N1 and N2 are nonmagnetic contacts, F1 is the reference layer, F2 is the free layer, and C is the middle layer, separating F1 and F2. The magnetization vector points in the x-direction in F1, while the magnetization in F2 lies in the xz-plane, forming an angle \(\theta \) with the one in F1. Spin flipping in the middle layer can be removed by letting \(\lambda _{\text {sf}}^{C} \rightarrow \infty \). The set of 24 equations can be employed to find the 20 unknown coefficients, 16 real and 4 complex.
A.1.1 Interface N1|F1
Continuity equations for the first interface, located at \(x=x_\text {F1}\).
Spin accumulation continuity
\begin{gather} x \qq {:} A_1=G_1 + G_2\exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{\text {sdl}}^{\text {F1}}}\right ) \\[14pt] y \qq {:} A_2=2 \, \text {Re} \, \left (G_3\right ) + 2 \, \text {Re} \, \left (G_4 \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right ) \\[14pt] z \qq {:} A_3=2 \, \text {Im} \, \left (G_3\right ) + 2 \, \text {Im} \, \left (G_4 \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right ) \end{gather}
Spin current continuity
\begin{gather} x \qq {:} -\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_1=-\beta _{\sigma }^{\text {F1}} \frac {\mu _B}{e} J_\text {C} + \frac {2 D_{0}^{\text {F1}} \left (1-\beta _{\sigma }^{\text {F1}} \beta _{D}^{\text {F1}}\right )}{\lambda _{\text {sdl}}^{\text {F1}}}\left (G_1-G_2 \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{\text {sdl}}^{\text {F1}}}\right )\right ) \\[14pt] y \qq {:} -\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_2=2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right ) \\[14pt] z \qq {:} -\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_3=2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right ) \end{gather}
A.1.2 Interface F1|C
Continuity equations for the second interface, located at \(x=x_\text {C}\).
Spin accumulation continuity
\begin{gather} x \qq {:} G_1\exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{\text {sdl}}^{\text {F1}}}\right ) + G_2=A_4+A_5\exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right ) \\[14pt] y \qq {:} 2 \, \text {Re} \, \left (G_3 \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )+2 \, \text {Re} \, \left (G_4\right )=A_6+A_7\exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right ) \\[14pt] z \qq {:} 2 \, \text {Im} \, \left (G_3 \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )+2 \, \text {Im} \, \left (G_4\right )=A_8+A_9\exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right ) \end{gather}
Spin current continuity
\begin{gather} \nonumber {x \qq {:} -\beta _{\sigma }^{\text {F1}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F1}} \left (1-\beta _{\sigma }^{\text {F1}} \beta _{D}^{\text {F1}}\right )}{\lambda _{\text {sdl}}^{\text {F1}}}\left (G_1 \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{\text {sdl}}^{\text {F1}}}\right )-G_2\right )=} \\ =\frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4-A_5 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {y \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right )=} \\ =\frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6-A_7 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {z \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right )=} \\ =\frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8-A_9 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \end{gather}
A.1.3 Interface C|F2
Continuity equations for the third interface, located at \(x=x_0\).
Spin accumulation continuity
\begin{gather} \nonumber {x \qq {:} A_4 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )+A_5=\left (G_5+G_6\exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right ) \cos \theta +} \\ -\left (2 \, \text {Im} \, \left (G_7\right ) + 2 \, \text {Im} \, \left (G_8 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \sin \theta \\[14pt] y \qq {:} A_6\exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )+A_7 = 2 \, \text {Re} \, \left (G_7\right ) + 2 \, \text {Re} \, \left (G_8 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right ) \\[14pt] \nonumber {z \qq {:} A_8\exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )+A_9=\left (2 \, \text {Im} \, \left (G_7\right ) + 2 \, \text {Im} \, \left (G_8 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\cos \theta +} \\ +\left (G_5+G_6\exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right ) \sin \theta \end{gather}
Spin current continuity
\begin{gather} \nonumber {x \qq {:} \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_5\right )=} \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} + \frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right )\right ) \cos \theta +} \\ -2 D_\text {e}^{\text {F2}} \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \sin \theta \\[14pt] y \qq {:} \nonumber {\frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_7\right )=} \\ = 2 D_\text {e}^{\text {F2}} \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \\[14pt] \nonumber {z \qq {:} \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_9\right )}= \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right ) \right ) \sin \theta +} \\ +2 D_\text {e}^{\text {F2}}\left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \cos \theta \end{gather}
A.1.4 Interface F2|N2
Continuity equations for the third interface, located at \(x=x_\text {F2}\).
Spin accumulation continuity
\begin{gather} x \qq {:} \nonumber {\left (G_5\exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )+G_6\right ) \cos \theta } + \\ -\left (2 \, \text {Im} \, \left (G_7 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )+2 \, \text {Im} \, \left (G_8\right )\right ) \sin \theta =A_{10} \\[14pt] y \qq {:} 2 \, \text {Re} \, \left (G_7 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )+2 \, \text {Re} \, \left (G_8\right )=A_{11} \\[14pt] z \qq {:} \nonumber {\left (2 \, \text {Im} \, \left (G_7 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )+2 \, \text {Im} \, \left (G_8\right )\right )\cos \theta } + \\ + \left (G_5\exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )+G_6\right )\sin \theta =A_{12} \end{gather}
Spin current continuity
\begin{gather} \nonumber {x \qq {:} \left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} + \frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )-G_6\right ) \right ) \cos \theta +} \\-2 D_\text {e}^{\text {F2}} \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right ) \sin \theta =\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{10} \\[14pt] y \qq {:} 2 D_\text {e}^{\text {F2}} \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )=\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{11} \\[14pt] \nonumber {z \qq {:} \left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} +\frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )-G_6\right ) \right )\sin \theta +} \\+2 D_\text {e}^{\text {F2}} \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right ) \cos \theta =\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{12} \end{gather}
A.2 Tunneling Spin Current
In the presence of a tunneling spin current described by (8.2b), the continuity equations for the spin current at the interfaces with the middle layer need to be modified. The new expressions are reported below.
A.2.1 Interface F1|C
Modified spin current continuity
\begin{gather} \nonumber {x \qq {:} -\beta _{\sigma }^{\text {F1}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F1}} \left (1-\beta _{\sigma }^{\text {F1}} \beta _{D}^{\text {F1}}\right )}{\lambda _{\text {sdl}}^{\text {F1}}}\left (G_1 \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{\text {sdl}}^{\text {F1}}}\right )-G_2\right )=} \\ =-\frac {a_\text {RL} \, P_\text {RL}+a_\text {FL} \, P_\text {FL} \, \cos \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4-A_5 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {y \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right )=} \\ =-\frac {1/2 \, \left ( P_\text {RL} \, P_\text {RL}^\eta -P_\text {FL} \, P_\text {FL}^\eta \right ) \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6-A_7 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {z \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right )=} \\ =-\frac {a_\text {FL} \, P_\text {FL} \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8-A_9 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \end{gather}
A.2.2 Interface C|F2
Modified spin current continuity
\begin{gather} \nonumber {x \qq {:} -\frac {a_\text {RL} \, P_\text {RL}+a_\text {FL} \, P_\text {FL} \, \cos \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_5\right )=} \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} + \frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right )\right ) \cos \theta +} \\ -2 D_\text {e}^{\text {F2}} \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \sin \theta \\[14pt] y \qq {:} \nonumber {-\frac {1/2 \, \left ( P_\text {RL} \, P_\text {RL}^\eta -P_\text {FL} \, P_\text {FL}^\eta \right ) \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_7\right )=} \\ = 2 D_\text {e}^{\text {F2}} \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \displaybreak \\[14pt] \nonumber {z \qq {:} -\frac {a_\text {FL} \, P_\text {FL} \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_9\right )}= \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right ) \right ) \sin \theta +} \\ +2 D_\text {e}^{\text {F2}}\left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \cos \theta \end{gather}
A.3 Ballistic Spin Current
When employing (8.11), the continuity equations need to updated to take the additional spin current terms, depending on the momentum relaxation path \(\lambda \), into account. The expressions for the spin accumulation remain the same, with the following change of parameters:
\(\seteqnumber{1}{A.33}{0}\)\begin{gather} \lambda _{+}^{-1} = \sqrt {\frac {k_\varphi }{\lambda _\text {d}^2} - \frac {k_\text {J}}{\lambda _\text {J}^2} - i \pqty {\frac {k_\varphi }{\lambda _\text {J}^2} + \frac {k_\text {J}}{\lambda _\text {d}^2}} } \\ k_\text {J} = \pqty {\frac {\lambda }{\lambda _\text {J}}}^2, \qquad k_\varphi = 1 + \pqty {\frac {\lambda }{\lambda _\varphi }}^2, \qquad \lambda _\text {d}^{-1} = \sqrt {\frac {1}{\lambda _{\text {sf}}^2} + \frac {1}{\lambda _{\varphi }^2}} \end{gather}
The updated continuity equations for the spin current, which take the tunneling contributions into account, are reported below.
A.3.1 Interface N1|F1
Ballistic spin current continuity
\begin{gather} x \qq {:} -\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_1=-\beta _{\sigma }^{\text {F1}} \frac {\mu _B}{e} J_\text {C} + \frac {2 D_{0}^{\text {F1}} \left (1-\beta _{\sigma }^{\text {F1}} \beta _{D}^{\text {F1}}\right )}{\lambda _{\text {sdl}}^{\text {F1}}}\left (G_1-G_2 \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{\text {sdl}}^{\text {F1}}}\right )\right ) \\[14pt] y \qq {:} \nonumber {-\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_2 = 2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right )\frac {k_\varphi ^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2}} + \\ - 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right ) \frac {k_\text {J}^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2} \\[14pt] z \qq {:} \nonumber {-\frac {D_\text {e}^{\text {N1}}}{\lambda _{\text {sf}}^{\text {N1}}}A_3=2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right )\frac {k_\text {J}^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2}} + \\ + 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}}\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}} \exp \left (\frac {x_{\text {F1}}-x_\text {C}}{\lambda _{+}^{\text {F1}}}\right )\right )\right ) \frac {k_\varphi ^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2} \end{gather}
A.3.2 Interface F1|C
Ballistic spin current continuity
\begin{gather} \nonumber {x \qq {:} -\beta _{\sigma }^{\text {F1}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F1}} \left (1-\beta _{\sigma }^{\text {F1}} \beta _{D}^{\text {F1}}\right )}{\lambda _{\text {sdl}}^{\text {F1}}}\left (G_1 \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{\text {sdl}}^{\text {F1}}}\right )-G_2\right )=} \\ =-\frac {a_\text {RL} \, P_\text {RL}+a_\text {FL} \, P_\text {FL} \, \cos \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4-A_5 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {y \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right ) \frac {k_\varphi ^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2} - } \\ \nonumber {+ 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right ) \frac {k_\text {J}^\text {F1}}{(k_\text {J}^\text {F1})^2+(k_\text {J}^\text {F1})^2} = } \\ =-\frac {1/2 \, \left ( P_\text {RL} \, P_\text {RL}^\eta -P_\text {FL} \, P_\text {FL}^\eta \right ) \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6-A_7 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \\[14pt] \nonumber {z \qq {:} 2 D_\text {e}^{\text {F1}} \left ( \, \text {Re} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Re} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right ) \frac {k_\text {J}^\text {F1}}{(k_\varphi ^\text {F1})^2+(k_\text {J}^\text {F1})^2} + } \\ \nonumber {+ 2 D_\text {e}^{\text {F1}} \left ( \, \text {Im} \, \left (\frac {G_3}{\lambda _{+}^{\text {F1}}} \exp \left (-\frac {x_\text {C}-x_{\text {F1}}}{\lambda _{+}^{\text {F1}}}\right )\right )- \, \text {Im} \, \left (\frac {G_4}{\lambda _{+}^{\text {F1}}}\right )\right ) \frac {k_\varphi ^\text {F1}}{(k_\text {J}^\text {F1})^2+(k_\text {J}^\text {F1})^2} = } \\ =-\frac {a_\text {FL} \, P_\text {FL} \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8-A_9 \exp \left (\frac {x_\text {C}-x_0}{\lambda _{\text {sf}}^{C}}\right )\right ) \end{gather}
A.3.3 Interface C|F2
Ballistic spin current continuity
\begin{gather} \nonumber {x \qq {:} -\frac {a_\text {RL} \, P_\text {RL}+a_\text {FL} \, P_\text {FL} \, \cos \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_4 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_5\right )=} \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} + \frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right )\right ) \cos \theta +} \\ \nonumber {-2 D_\text {e}^{\text {F2}} \left (\left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\text {J}^\text {F2})^2+(k_\text {J}^\text {F2})^2} + \right .} \\ \left . \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right ) \frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} \right )\sin \theta \displaybreak \\[14pt] \nonumber {y \qq {:} -\frac {1/2 \, \left ( P_\text {RL} \, P_\text {RL}^\eta -P_\text {FL} \, P_\text {FL}^\eta \right ) \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_6 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_7\right )=} \\ \nonumber {= 2 D_\text {e}^{\text {F2}} \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\frac {k_\varphi ^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} + } \\ - 2 D_\text {e}^{\text {F2}}\left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} \\[14pt] \nonumber {z \qq {:} -\frac {a_\text {FL} \, P_\text {FL} \, \sin \theta }{ 1+P_\text {RL} \, P_\text {FL} \, \cos \theta } \, \frac {\mu _\text {B}}{e} \, J_\text {C} + \frac {D_\text {e}^{C}}{\lambda _{\text {sf}}^{C}} \left (A_8 \exp \left (-\frac {x_0-x_\text {C}}{\lambda _{\text {sf}}^{C}}\right )-A_9\right )}= \\ \nonumber {=\left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C}+\frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5-G_6 \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{\text {sdl}}^{\text {F2}}}\right )\right ) \right ) \sin \theta +} \\ \nonumber {+2 D_\text {e}^{\text {F2}}\left (\left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} + \right .} \\ \left . + \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}}\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}} \exp \left (\frac {x_0-x_{\text {F2}}}{\lambda _{+}^{\text {F2}}}\right )\right )\right )\frac {k_\varphi ^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2}\right )\cos \theta \end{gather}
A.3.4 Interface F2|N2
Ballistic spin current continuity
\begin{gather} \nonumber {x \qq {:} \left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} + \frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )-G_6\right ) \right ) \cos \theta +} \\ \nonumber {-2 D_\text {e}^{\text {F2}} \left ( \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} + \right .} \\ \left . + \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\varphi ^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} \right )\sin \theta =\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{10} \\[14pt] y \qq {:} \nonumber {2 D_\text {e}^{\text {F2}} \left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\varphi ^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} + } \\ - 2 D_\text {e}^{\text {F2}} \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} =\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{11} \displaybreak \\[14pt] \nonumber {z \qq {:} \left (-\beta _{\sigma }^{\text {F2}} \frac {\mu _B}{e} J_\text {C} +\frac {D_\text {e}^{\text {F2}} \left (1-\beta _{\sigma }^{\text {F2}} \beta _{D}^{\text {F2}}\right )}{\lambda _{\text {sdl}}^{\text {F2}}}\left (G_5 \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{\text {sdl}}^{\text {F2}}}\right )-G_6\right ) \right )\sin \theta +} \\ \nonumber {+2 D_\text {e}^{\text {F2}} \left (\left ( \, \text {Re} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Re} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\text {J}^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} \right .} \\ \left . + \left ( \, \text {Im} \, \left (\frac {G_7}{\lambda _{+}^{\text {F2}}} \exp \left (-\frac {x_{\text {F2}}-x_0}{\lambda _{+}^{\text {F2}}}\right )\right )- \, \text {Im} \, \left (\frac {G_8}{\lambda _{+}^{\text {F2}}}\right )\right )\frac {k_\varphi ^\text {F2}}{(k_\varphi ^\text {F2})^2+(k_\text {J}^\text {F2})^2} \right )\cos \theta =\frac {D_\text {e}^{\text {N2}}}{\lambda _{\text {sf}}^{\text {N2}}}A_{12} \end{gather}
Bibliography
-
[1] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N. Onizawa, et al., “Standby-power-free integrated circuits using MTJ-based VLSI computing”, Proc. IEEE, vol. 104, no. 10, pp. 1844–1863, 2016. doi: 10.1109/JPROC.2016.2574939.
-
[2] W. J. Gallagher, E. Chien, T. Chiang, J. Huang, M. Shih, C. Y. Wang, et al., “22nm STT-MRAM for reflow and automotive uses with high yield, reliability, and magnetic immunity and with performance and shielding options”, in Proc. IEDM Conf., 2019, pp. 2.7.1–2.7.4. doi: 10.1109/IEDM19573.2019.8993469.
-
[3] S. Sakhare, M. Perumkunnil, T. H. Bao, S. Rao, W. Kim, D. Crotti, et al., “Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node”, in Proc. IEDM Conf., 2018, pp. 18.3.1–18.3.4. doi: 10.1109/IEDM.2018.8614637.
-
[4] S. Aggarwal, H. Almasi, M. DeHerrera, B. Hughes, S. Ikegawa, J. Janesky, et al., “Demonstration of a reliable 1 Gb standalone spin-transfer torque MRAM for industrial applications”, in Proc. IEDM Conf., 2019, 2.1.1–2.1.4. doi: 10.1109/IEDM19573.2019.8993516.
-
[5] K. Lee, J. H. Bak, Y. J. Kim, C. K. Kim, A. Antonyan, D. H. Chang, et al., “1Gbit high density embedded STT-MRAM in 28nm FDSOI technology”, in Proc. IEDM Conf., 2019, pp. 2.2.1–2.2.4. doi: 10.1109/IEDM19573.2019.8993551.
-
[6] V. B. Naik, K. Lee, K. Yamane, R. Chao, J. Kwon, N. Thiyagarajah, et al., “Manufacturable 22nm FD-SOI embedded MRAM technology for industrial-grade MCU and IOT applications”, in Proc. IEDM Conf., 2019, pp. 2.3.1–2.3.4. doi: 10.1109/IEDM19573.2019.8993454.
-
[7] J. G. Alzate, U. Arslan, P. Bai, J. Brockman, Y. J. Chen, N. Das, et al., “2 Mb array-level demonstration of STT-MRAM process and performance towards L4 cache applications”, in Proc. IEDM Conf., 2019, pp. 2.4.1–2.4.4. doi: 10.1109/IEDM19573.2019.8993474.
-
[8] G. Hu, J. J. Nowak, M. G. Gottwald, S. L. Brown, B. Doris, C. P. D’Emic, et al., “Spin-transfer torque MRAM with reliable 2 ns writing for last level cache applications”, in Proc. IEDM Conf., 2019, pp. 2.6.1–2.6.4. doi: 10.1109/IEDM19573.2019.8993604.
-
[9] S. H. Han, J. M. Lee, H. M. Shin, J. H. Lee, K. S. Suh, K. T. Nam, et al., “28-nm 0.08 mm2 /Mb embedded MRAM for frame buffer memory”, in Proc. IEDM Conf., 2020, pp. 11.2.1–11.2.4. doi: 10.1109/IEDM13553.2020.9372040.
-
[10] Y.-C. Shih, C.-F. Lee, Y.-A. Chang, P.-H. Lee, H.-J. Lin, Y.-L. Chen, et al., “A reflow-capable, embedded 8Mb STT-MRAM macro with 9ns read access time in 16nm FinFET logic CMOS process”, in Proc. IEDM Conf., 2020, pp. 11.4.1–11.4.4. doi: 10.1109/IEDM13553.2020.9372115.
-
[11] V. B. Naik, K. Yamane, T. Lee, J. Kwon, R. Chao, J. Lim, et al., “JEDEC-qualified highly reliable 22nm FD-SOI embedded MRAM for low-power industrial-grade, and extended performance towards automotive-grade-1 applications”, in Proc. IEDM Conf., 2020, pp. 11.3.1–11.3.4. doi: 10.1109/IEDM13553.2020.9371935.
-
[12] B. Tudu and A. Tiwari, “Recent developments in perpendicular magnetic anisotropy thin films for data storage applications”, Vacuum, vol. 146, pp. 329–341, 2017. doi: 10.1016/j.vacuum.2017.01.031.
-
[13] S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, et al., “Spin and charge drift-diffusion in ultra-scaled MRAM cells”, Sci. Rep., vol. 12, no. 1, p. 20 958, 2022. doi: 10.1038/s41598-022-25586-4.
-
[14] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers”, J. Magn. Magn. Mater., vol. 159, no. 1, pp. L1–L7, 1996. doi: 10.1016/0304-8853(96)00062-5.
-
[15] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current”, Phys. Rev. B, vol. 54, pp. 9353–9358, 1996. doi: 10.1103/PhysRevB.54.9353.
-
[16] J. C. Slonczewski, “Currents, torques, and polarization factors in magnetic tunnel junctions”, Phys. Rev. B, vol. 71, p. 024 411, 2005. doi: 10.1103/PhysRevB.71.024411.
-
[17] A. Makarov, “Modeling of emerging resistive switching based memory cells”, Ph.D. dissertation, Institute for Microelectronics, TU Wien, 2014. [Online]. Available: https://www.iue.tuwien.ac.at/phd/makarov/.
-
[18] W. Skowroński, M. Czapkiewicz, S. Ziętek, J. Chęciński, M. Frankowski, P. Rzeszut, et al., “Understanding stability diagram of perpendicular magnetic tunnel junctions”, Sci. Rep., vol. 7, no. 1, p. 10 172, 2017. doi: 10.1038/s41598-017-10706-2.
-
[19] H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, “MgO/CoFeB/Ta/CoFeB/MgO recording structure in magnetic tunnel junctions with perpendicular easy axis”, IEEE Trans. Magn., vol. 49, no. 7, pp. 4437–4440, 2013. doi: 10.1109/TMAG.2013.2251326.
-
[20] K. Nishioka, H. Honjo, S. Ikeda, T. Watanabe, S. Miura, H. Inoue, et al., “Novel quad interface MTJ technology and its first demonstration with high thermal stability and switching efficiency for STT-MRAM beyond 2Xnm”, in Symp. on VLSI Tech., 2019, T120–T121. doi: 10.23919/VLSIT.2019.8776499.
-
[21] P. Khanal, B. Zhou, M. Andrade, Y. Dang, A. Davydov, A. Habiboglu, et al., “Perpendicular magnetic tunnel junctions with multi-interface free layer”, Appl. Phys. Lett., vol. 119, no. 24, p. 242 404, 2021. doi: 10.1063/5.0066782.
-
[22] B. Jinnai, J. Igarashi, K. Watanabe, T. Funatsu, H. Sato, S. Fukami, et al., “High-performance shape-anisotropy magnetic tunnel junctions down to 2.3 nm”, in Proc. IEDM Conf., 2020, pp. 24.6.1–24.6.4. doi: 10.1109/IEDM13553.2020.9371972.
-
[23] C. Abert, M. Ruggeri, F. Bruckner, C. Vogler, G. Hrkac, D. Praetorius, et al., “A three-dimensional spin-diffusion model for micromagnetics”, Sci. Rep., vol. 5, no. 1, p. 14 855, 2015. doi: 10.1038/srep14855.
-
[24] C. Abert, M. Ruggeri, F. Bruckner, C. Vogler, A. Manchon, D. Praetorius, et al., “A self-consistent spin-diffusion model for micromagnetics”, Sci. Rep., vol. 6, no. 1, p. 16, 2016. doi: 10.1038/s41598-016-0019-y.
-
[25] S. Lepadatu, “Unified treatment of spin torques using a coupled magnetisation dynamics and three-dimensional spin current solver”, Sci. Rep., vol. 7, no. 1, p. 12 937, 2017. doi: 10.1038/s41598-017-13181-x.
-
[26] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, “Spintronics based random access memory: A review”, Mater. Today, vol. 20, no. 9, pp. 530–548, 2017. doi: 10.1016/j.mattod.2017.07.007.
-
[27] J. . Zhu and C. Park, “Magnetic tunnel junctions”, Mater. Today, vol. 9, no. 11, pp. 36–45, 2006. doi: 10.1016/S1369-7021(06)71693-5.
-
[28] D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive random access memory”, Proc. IEEE, vol. 104, no. 10, pp. 1796–1830, 2016. doi: 10.1109/JPROC.2016.2590142.
-
[29] F. C. Williams and T. Kilburn, “Electronic digital computers”, Nature, vol. 162, no. 4117, pp. 487–487, 1948. doi: 10.1038/162487a0.
-
[30] W. N. Papian, “A coincident-current magnetic memory cell for the storage of digital information”, Proc. IRE, vol. 40, no. 4, pp. 475–478, 1952. doi: 10.1109/JRPROC.1952.274045.
-
[31] R. A. Abbott, W. M. Regitz, and J. A. Karp, “A 4K MOS dynamic random-access memory”, IEEE J. Solid-State Circuits, vol. 8, no. 5, pp. 292–298, 1973. doi: 10.1109/JSSC.1973.1050406.
-
[32] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., vol. 61, pp. 2472–2475, 1988. doi: 10.1103/PhysRevLett.61.2472.
-
[33] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Phys. Rev. B, vol. 39, no. 7, pp. 4828–4830, 1989. doi: 10.1103/PhysRevB.39.4828.
-
[34] T. Miyazaki, T. Yaoi, and S. Ishio, “Large magnetoresistance effect in 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junction”, J. Magn. Magn. Mater., vol. 98, no. 1, pp. L7–L9, 1991. doi: 10.1016/0304-8853(91)90417-9.
-
[35] T. S. Plaskett, P. P. Freitas, N. P. Barradas, M. F. da Silva, and J. C. Soares, “Magnetoresistance and magnetic properties of NiFe/oxide/Co junctions prepared by magnetron sputtering”, J. Appl. Phys., vol. 76, no. 10, pp. 6104–6106, 1994. doi: 10.1063/1.358319.
-
[36] T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction”, J. Magn. Magn. Mater., vol. 139, no. 3, pp. L231–L234, 1995. doi: 10.1016/0304-8853(95)90001-2.
-
[37] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions”, Phys. Rev. Lett., vol. 74, pp. 3273–3276, 1995. doi: 10.1103/PhysRevLett.74.3273.
-
[38] R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, et al., “Large tunneling magnetoresistance enhancement by thermal anneal”, Appl. Phys. Lett., vol. 73, no. 22, pp. 3288–3290, 1998. doi: 10.1063/1.122747.
-
[39] S. Cardoso, V. Gehanno, R. Ferreira, and P. Freitas, “Ion beam deposition and oxidation of spin-dependent tunnel junctions”, IEEE Trans. Magn., vol. 35, no. 5, pp. 2952–2954, 1999. doi: 10.1109/20.801044.
-
[40] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, “Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches”, Phys. Rev. B, vol. 63, p. 054 416, 2001. doi: 10.1103/PhysRevB.63.054416.
-
[41] J. Mathon and A. Umerski, “Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction”, Phys. Rev. B, vol. 63, p. 220 403, 2001. doi: 10.1103/PhysRevB.63.220403.
-
[42] M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martínez Boubeta, J. L. Costa-Krämer, et al., “Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001)”, Appl. Phys. Lett., vol. 79, no. 11, pp. 1655–1657, 2001. doi: 10.1063/1.1404125.
-
[43] J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, et al., “High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions”, Appl. Phys. Lett., vol. 82, no. 25, pp. 4507–4509, 2003. doi: 10.1063/1.1586785.
-
[44] S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, “High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling”, Jpn. J. Appl. Phys., vol. 43, no. No. 4B, pp. L588–L590, 2004. doi: 10.1143/jjap.43.l588.
-
[45] S. Ikeda, J. Hayakawa, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, et al., “Dependence of tunnel magnetoresistance in MgO based magnetic tunnel junctions on Ar pressure during MgO sputtering”, Jpn. J. Appl. Phys., vol. 44, no. No. 48, pp. L1442–L1445, 2005. doi: 10.1143/jjap.44.l1442.
-
[46] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars”, Phys. Rev. Lett., vol. 84, pp. 3149–3152, 2000. doi: 10.1103/PhysRevLett.84.3149.
-
[47] W. Kim, J. H. Jeong, Y. Kim, W. C. Lim, J. H. Kim, J. H. Park, et al., “Extended scalability of perpendicular STT-MRAM towards sub-20nm MTJ node”, in Proc. IEDM Conf., 2011, pp. 24.1.1–24.1.4. doi: 10.1109/IEDM.2011.6131602.
-
[48] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O’Sullivan, D. W. Abraham, et al., “Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy”, Appl. Phys. Lett., vol. 100, no. 13, p. 132 408, 2012. doi: 10.1063/1.3694270.
-
[49] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: Review and prospect”, Microelectron. Reliab., vol. 52, no. 4, pp. 613–627, 2012, Advances in non-volatile memory technology. doi: 10.1016/j.microrel.2011.09.028.
-
[50] A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, et al., “Basic principles of STT-MRAM cell operation in memory arrays”, J. Phys. D: Appl. Phys., vol. 46, no. 7, p. 074 001, 2013. doi: 10.1088/0022-3727/46/7/074001.
-
[51] O. Golonzka, J.-G. Alzate, U. Arslan, M. Bohr, P. Bai, J. Brockman, et al., “MRAM as embedded non-volatile memory solution for 22FFL FinFET technology”, in Proc. IEDM Conf., 2018, pp. 18.1.1–18.1.4. doi: 10.1109/IEDM.2018.8614620.
-
[52] J. Åkerman, “Toward a universal memory”, Science, vol. 308, no. 5721, pp. 508–510, 2005. doi: 10.1126/science.1110549.
-
[53] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, et al., “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction”, Nat. Mater., vol. 9, no. 9, pp. 721–724, 2010. doi: 10.1038/nmat2804.
-
[54] S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, et al., “Magnetic tunnel junctions for spintronic memories and beyond”, IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 991–1002, 2007. doi: 10.1109/TED.2007.894617.
-
[55] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, et al., “Advances and future prospects of spin--transfer torque random access memory”, IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1873–1878, 2010. doi: 10.1109/TMAG.2010.2042041.
-
[56] W. Thomson, “XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron”, Proc. R. Soc. London, vol. 8, pp. 546–550, 1857. doi: 10.1098/rspl.1856.0144.
-
[57] P. P. Freitas, H. Ferreira, R. Ferreira, S. Cardoso, S. van Dijken, and J. Gregg, “Advanced magnetic nanostructures”, in Springer US, 2006, ch. Nanostructures for Spin Electronics, isbn: 978-0-387-23316-1. doi: 10.1007/0-387-23316-4_14.
-
[58] M. Getzlaff, “Fundamentals of magnetism”, in Springer Berlin Heidelberg, 2008, ch. Magnetoresistivity, isbn: 978-3-540-31152-2. doi: 10.1007/978-3-540-31152-2_16.
-
[59] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, “70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers”, IEEE Trans. Magn., vol. 40, no. 4, pp. 2269–2271, 2004. doi: 10.1109/TMAG.2004.830219.
-
[60] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, et al., “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nat. Mater., vol. 3, no. 12, pp. 862–867, 2004. doi: 10.1038/nmat1256.
-
[61] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, et al., “230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions”, Appl. Phys. Lett., vol. 86, no. 9, p. 092 502, 2005. doi: 10.1063/1.1871344.
-
[62] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, “Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature”, Jpn. J. Appl. Phys., vol. 44, no. No. 19, pp. L587–L589, 2005. doi: 10.1143/jjap.44.l587.
-
[63] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, et al., “Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature”, Appl. Phys. Lett., vol. 93, no. 8, p. 082 508, 2008. doi: 10.1063/1.2976435.
-
[64] H. Jaffrès, D. Lacour, F. Nguyen Van Dau, J. Briatico, F. Petroff, and A. Vaurès, “Angular dependence of the tunnel magnetoresistance in transition-metal-based junctions”, Phys. Rev. B, vol. 64, p. 064 427, 2001. doi: 10.1103/PhysRevB.64.064427.
-
[65] Y. Ji, J. Liu, and C. Yang, “Novel modeling and dynamic simulation of magnetic tunnel junctions for spintronic sensor development”, J. Phys. D: Appl. Phys., vol. 50, no. 2, p. 025 005, 2016. doi: 10.1088/1361-6463/50/2/025005.
-
[66] R. Sbiaa, H. Meng, and S. N. Piramanayagam, “Materials with perpendicular magnetic anisotropy for magnetic random access memory”, Phys. Status Solidi RRL, vol. 5, no. 12, pp. 413–419, 2011. doi: 10.1002/pssr.201105420.
-
[67] J.-G. Zhu, “Magnetoresistive random access memory: The path to competitiveness and scalability”, Proc. IEEE, vol. 96, no. 11, pp. 1786–1798, 2008. doi: 10.1109/JPROC.2008.2004313.
-
[68] Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, “Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions”, Appl. Phys. Lett., vol. 84, no. 16, pp. 3118–3120, 2004. doi: 10.1063/1.1707228.
-
[69] Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, “Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers”, Appl. Phys. Lett., vol. 87, no. 23, p. 232 502, 2005. doi: 10.1063/1.2139849.
-
[70] H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, et al., “Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions”, Jpn. J. Appl. Phys., vol. 44, no. No. 40, pp. L1237–L1240, 2005. doi: 10.1143/jjap.44.l1237.
-
[71] J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, et al., “Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions”, Jpn. J. Appl. Phys., vol. 44, no. No. 41, pp. L1267–L1270, 2005. doi: 10.1143/jjap.44.l1267.
-
[72] M. J. Carey, R. E. Fontana, and B. A. Gurney, Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing, Google Patent, Google Patent, 2001. [Online]. Available: https://patents.google.com/patent/US6266218.
-
[73] J. M. Slaughter, R. W. Dave, M. DeHerrera, M. Durlam, B. N. Engel, J. Janesky, et al., “Fundamentals of MRAM technology”, J. Supercond., vol. 15, no. 1, pp. 19–25, 2002. doi: 10.1023/A:1014018925270.
-
[74] F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, “Perpendicular magnetic anisotropy of Co-Au multilayers induced by interface sharpening”, Phys. Rev. Lett., vol. 60, pp. 2769–2772, 1988. doi: 10.1103/PhysRevLett.60.2769.
-
[75] W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, “Perpendicular magnetic anisotropy and magneto-optical Kerr effect of vapor-deposited Co/Pt-layered structures”, J. Appl. Phys., vol. 65, no. 12, pp. 4971–4975, 1989. doi: 10.1063/1.343189.
-
[76] B. N. Engel, C. D. England, R. A. Van Leeuwen, M. H. Wiedmann, and C. M. Falco, “Interface magnetic anisotropy in epitaxial superlattices”, Phys. Rev. Lett., vol. 67, pp. 1910–1913, 1991. doi: 10.1103/PhysRevLett.67.1910.
-
[77] G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder, “Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers”, Phys. Rev. Lett., vol. 68, pp. 682–685, 1992. doi: 10.1103/PhysRevLett.68.682.
-
[78] H. Meng, W. H. Lum, R. Sbiaa, S. Y. H. Lua, and H. K. Tan, “Annealing effects on CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy”, J. Appl. Phys., vol. 110, no. 3, p. 033 904, 2011. doi: 10.1063/1.3611426.
-
[79] H. Sato, S. Ikeda, S. Fukami, H. Honjo, S. Ishikawa, M. Yamanouchi, et al., “Co/Pt multilayer based reference layers in magnetic tunnel junctions for nonvolatile spintronics VLSIs”, Jpn. J. Appl. Phys., vol. 53, no. 4S, 04EM02, 2014. doi: 10.7567/jjap.53.04em02.
-
[80] S. Bandiera, R. C. Sousa, Y. Dahmane, C. Ducruet, C. Portemont, V. Baltz, et al., “Comparison of synthetic antiferromagnets and hard ferromagnets as reference layer in magnetic tunnel junctions with perpendicular magnetic anisotropy”, IEEE Magn. Lett., vol. 1, pp. 3 000 204–3 000 204, 2010. doi: 10.1109/LMAG.2010.2052238.
-
[81] D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, et al., “Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions”, Appl. Phys. Lett., vol. 98, no. 2, p. 022 501, 2011. doi: 10.1063/1.3536482.
-
[82] J.-H. Park, Y. Kim, W. C. Lim, J. H. Kim, S. H. Park, J. H. Kim, et al., “Enhancement of data retention and write current scaling for sub-20nm STT-MRAM by utilizing dual interfaces for perpendicular magnetic anisotropy”, in Proc. VLSIT Conf., 2012, pp. 57–58. doi: 10.1109/VLSIT.2012.6242459.
-
[83] C. Abert, “Micromagnetics and spintronics: Models and numerical methods”, Eur. Phys. J. B, vol. 92, no. 6, p. 120, 2019. doi: 10.1140/epjb/e2019-90599-6.
-
[84] M. Ruggeri, “Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation”, Ph.D. dissertation, TU Wien, 2016. [Online]. Available: https://publik.tuwien.ac.at/files/publik_252806.pdf.
-
[85] H. Kronmüller, “Handbook of magnetism and advanced magnetic materials”, in John Wiley & Sons, Ltd, 2007, vol. Micromagnetism, ch. General Micromagnetic Theory, isbn: 9780470022184. doi: https://doi.org/10.1002/9780470022184.hmm201.
-
[86] L. D. Landau and E. M. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies”, Phys. Z. Sowjetunion, vol. 8, pp. 153–164, 1935.
-
[87] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans. Magn., vol. 40, no. 6, pp. 3443–3449, 2004. doi: 10.1109/TMAG.2004.836740.
-
[88] T. L. Gilbert, “Formulation, foundations and applications of the phenomenological theory of ferromagnetism”, Ph.D. dissertation, Illinois Institute of Technology Chicago, 1956.
-
[89] J. E. Miltat and M. J. Donahue, “Handbook of magnetism and advanced magnetic materials”, in John Wiley & Sons, Ltd, 2007, vol. Micromagnetism, ch. Numerical Micromagnetics: Finite Difference Methods, isbn: 9780470022184. doi: https://doi.org/10.1002/9780470022184.hmm202.
-
[90] M. Labrune and J. Miltat, “Wall structures in ferro/antiferromagnetic exchange-coupled bilayers: A numerical micromagnetic approach”, J. Magn. Magn. Mater., vol. 151, no. 1, pp. 231–245, 1995. doi: 10.1016/0304-8853(95)00328-2.
-
[91] A. Kákay, “Numerical investigations of micromagnetic structures”, Ph.D. dissertation, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, 2005. [Online]. Available: https://repozitorium.omikk.bme.hu/bitstream/handle/10890/431/ertekezes.pdf?sequence=1&isAllowed=y.
-
[92] G. Finocchio, M. Carpentieri, B. Azzerboni, L. Torres, E. Martinez, and L. Lopez-Diaz, “Micromagnetic simulations of nanosecond magnetization reversal processes in magnetic nanopillar”, J. Appl. Phys., vol. 99, no. 8, 08G522, 2006. doi: 10.1063/1.2177049.
-
[93] G. Finocchio, B. Azzerboni, G. D. Fuchs, R. A. Buhrman, and L. Torres, “Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions”, J. Appl. Phys., vol. 101, no. 6, p. 063 914, 2007. doi: 10.1063/1.2496202.
-
[94] J. L. García-Palacios and F. J. Lázaro, “Langevin-dynamics study of the dynamical properties of small magnetic particles”, Phys. Rev. B, vol. 58, pp. 14 937–14 958, 1998. doi: 10.1103/PhysRevB.58.14937.
-
[95] G. T. Rado and J. R. Weertman, “Spin-wave resonance in a ferromagnetic metal”, J. Phys. Chem. Solids, vol. 11, no. 3, pp. 315–333, 1959. doi: 10.1016/0022-3697(59)90233-1.
-
[96] J. Xiao, A. Zangwill, and M. D. Stiles, “Macrospin models of spin transfer dynamics”, Phys. Rev. B, vol. 72, p. 014 446, 2005. doi: 10.1103/PhysRevB.72.014446.
-
[97] Y. Zhou, “Spin momentum transfer effects for spintronic device applications”, Ph.D. dissertation, KTH, 2009. [Online]. Available: http://kth.diva-portal.org/smash/get/diva2:220709/FULLTEXT01.pdf.
-
[98] S. Zhang, P. M. Levy, and A. Fert, “Mechanisms of spin-polarized current-driven magnetization switching”, Phys. Rev. Lett., vol. 88, p. 236 601, 2002. doi: 10.1103/PhysRevLett.88.236601.
-
[99] M. Chshiev, A. Manchon, A. Kalitsov, N. Ryzhanova, A. Vedyayev, N. Strelkov, et al., “Analytical description of ballistic spin currents and torques in magnetic tunnel junctions”, Phys. Rev. B, vol. 92, p. 104 422, 2015. doi: 10.1103/PhysRevB.92.104422.
-
[100] M. Carpentieri, G. Finocchio, B. Azzerboni, L. Torres, L. Lopez-Diaz, and E. Martinez, “Effect of the classical ampere field in micromagnetic computations of spin polarized current-driven magnetization processes”, J. Appl. Phys., vol. 97, no. 10, p. 10C713, 2005. doi: 10.1063/1.1853291.
-
[101] L. Torres, L. Lopez-Diaz, E. Martinez, M. Carpentieri, and G. Finocchio, “Micromagnetic computations of spin polarized current-driven magnetization processes”, J. Magn. Magn. Mater., vol. 286, pp. 381–385, 2005, Proceedings of the 5th International Symposium on Metallic Multilayers. doi: 10.1016/j.jmmm.2004.09.126.
-
[102] Z. H. Xiao, X. Q. Ma, P. P. Wu, J. X. Zhang, L. Q. Chen, and S. Q. Shi, “Micromagnetic simulations of current-induced magnetization switching in Co/Cu/Co nanopillars”, Journal of Applied Physics, vol. 102, no. 9, p. 093 907, 2007. doi: 10.1063/1.2800999.
-
[103] M. Carpentieri, G. Finocchio, L. Torres, and B. Azzerboni, “Modeling of fast switching processes in nanoscale spin valves”, J. Appl. Phys., vol. 103, no. 7, 07B117, 2008. doi: 10.1063/1.2838285.
-
[104] K. Machida, N. Funabashi, K.-i. Aoshima, Y. Miyamoto, N. Kawamura, K. Kuga, et al., “Spin transfer switching of closely arranged multiple pillars with current-perpendicular-to-plane spin valves”, Journal of Applied Physics, vol. 103, no. 7, 07A713, 2008. doi: 10.1063/1.2838473.
-
[105] M. Julliere, “Tunneling between ferromagnetic films”, Phys. Lett. A, vol. 54, no. 3, pp. 225–226, 1975. doi: 10.1016/0375-9601(75)90174-7.
-
[106] P. Bouquin, “The switching paths of spin transfer torque magnetic random access memories”, Ph.D. dissertation, Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 2020. [Online]. Available: https://tel.archives-ouvertes.fr/tel-03026404/document.
-
[107] D. V. Berkov and J. Miltat, “Spin-torque driven magnetization dynamics: Micromagnetic modeling”, J. Magn. Magn. Mater., vol. 320, no. 7, pp. 1238–1259, 2008. doi: 10.1016/j.jmmm.2007.12.023.
-
[108] S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, et al., “Magnetic and electrical properties of amorphous CoFeB films”, J. Appl. Phys., vol. 99, no. 5, p. 053 701, 2006. doi: 10.1063/1.2174113.
-
[109] S. X. Huang, T. Y. Chen, and C. L. Chien, “Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection”, Appl. Phys. Lett., vol. 92, no. 24, p. 242 509, 2008. doi: 10.1063/1.2949740.
-
[110] S. Fiorentini, R. L. de Orio, W. Goes, J. Ender, and V. Sverdlov, “Comprehensive comparison of switching models for perpendicular spin-transfer torque MRAM cells”, in Proc. SISPAD Conf., © 2019 IEEE, 2019, pp. 1–4. doi: 10.1109/SISPAD.2019.8870359.
-
[111] D. Aurélio, L. Torres, and G. Finocchio, “Magnetization switching driven by spin-transfer-torque in high-TMR magnetic tunnel junctions”, J. Magn. Magn. Mater., vol. 321, no. 23, pp. 3913–3920, 2009. doi: 10.1016/j.jmmm.2009.07.050.
-
[112] D. Tomáš “Modelling of micromagnetic structures”, Ph.D. dissertation, Paris-Sud University, Orsay and Charles University, Prague, 1999.
-
[113] K. Ito, T. Devolder, C. Chappert, M. J. Carey, and J. A. Katine, “Probabilistic behavior in subnanosecond spin transfer torque switching”, J. Appl. Phys., vol. 99, no. 8, 08G519, 2006. doi: 10.1063/1.2176869.
-
[114] S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Perpendicular STT-MRAM switching at fixed voltage and at fixed current”, in Proc. EDTM Conf., © 2020 IEEE, 2020, pp. 1–4. doi: 10.1109/EDTM47692.2020.9117985.
-
[115] S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Influence of current redistribution in switching models for perpendicular STT-MRAM”, Adv, CMOS-Comp. Semicond. Devices 19, vol. 97, no. 5, pp. 159–164, 2020. doi: 10.1149/09705.0159ecst.
-
[116] S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Analysis of switching under fixed voltage and fixed current in perpendicular STT-MRAM”, IEEE J. Electron Devices Soc., vol. 8, pp. 1249–1256, 2020. doi: 10.1109/JEDS.2020.3023577.
-
[117] H. Sato, M. Yamanouchi, K. Miura, S. Ikeda, R. Koizumi, F. Matsukura, et al., “CoFeB thickness dependence of thermal stability factor in CoFeB/MgO perpendicular magnetic tunnel junctions”, IEEE Magn. Lett., vol. 3, pp. 3 000 204–3 000 204, 2012. doi: 10.1109/LMAG.2012.2190722.
-
[118] A. Manchon, N. Ryzhanova, N. Strelkov, A. Vedyayev, and B. Dieny, “Modelling spin transfer torque and magnetoresistance in magnetic multilayers”, J. Phys.: Condens. Matter, vol. 19, no. 16, p. 165 212, 2007. doi: 10.1088/0953-8984/19/16/165212.
-
[119] P. Graczyk and M. Krawczyk, “Nonresonant amplification of spin waves through interface magnetoelectric effect and spin-transfer torque”, Sci. Rep., vol. 11, no. 1, p. 15 692, 2021. doi: 10.1038/s41598-021-95267-1.
-
[120] P. Haney, H. W. Lee, K. J. Lee, A. Manchon, and M. Stiles, “Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling”, Phys. Rev. B, vol. 87, 2013. doi: 10.1103/PhysRevB.87.174411.
-
[121] T. Valet and A. Fert, “Theory of the perpendicular magnetoresistance in magnetic multilayers”, Phys. Rev. B, vol. 48, pp. 7099–7113, 1993. doi: 10.1103/PhysRevB.48.7099.
-
[122] M. Ruggeri, C. Abert, G. Hrkac, D. Suess, and D. Praetorius, “Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework”, Physica B, vol. 486, pp. 88–91, 2016, 10th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2015). doi: 10.1016/j.physb.2015.09.003.
-
[123] C. Petitjean, D. Luc, and X. Waintal, “Unified drift-diffusion theory for transverse spin currents in spin valves, domain walls, and other textured magnets”, Phys. Rev. Lett., vol. 109, p. 117 204, 2012. doi: 10.1103/PhysRevLett.109.117204.
-
[124] M. D. Stiles and A. Zangwill, “Anatomy of spin-transfer torque”, Phys. Rev. B, vol. 66, p. 014 407, 2002. doi: 10.1103/PhysRevB.66.014407.
-
[125] D. Luc, “Théorie unifiée du transport de spin, charge et chaleur”, Thèse de doctorat dirigée par Waintal, Xavier et Chshiev, Mairbek Nanophysique Université Grenoble Alpes (ComUE) 2016, Ph.D. dissertation, Université Grenoble Alpes, 2016. [Online]. Available: http://www.theses.fr/2016GREAY007.
-
[126] X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, “Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers”, Phys. Rev. B, vol. 62, pp. 12 317–12 327, 2000. doi: 10.1103/PhysRevB.62.12317.
-
[127] S. Borlenghi, V. Rychkov, C. Petitjean, and X. Waintal, “Multiscale approach to spin transport in magnetic multilayers”, Phys. Rev. B, vol. 84, p. 035 412, 2011. doi: 10.1103/PhysRevB.84.035412.
-
[128] V. S. Rychkov, S. Borlenghi, H. Jaffres, A. Fert, and X. Waintal, “Spin torque and waviness in magnetic multilayers: A bridge between Valet-Fert theory and quantum approaches”, Phys. Rev. Lett., vol. 103, p. 066 602, 2009. doi: 10.1103/PhysRevLett.103.066602.
-
[129] J. Chen, C. J. García-Cervera, and X. Yang, “Mean-field dynamics of the spin–magnetization coupling in ferromagnetic materials: Application to current-driven domain wall motions”, IEEE Trans. Magn., vol. 51, no. 6, pp. 1–6, 2015. doi: 10.1109/TMAG.2015.2401534.
-
[130] D. Braess, “Finite elements: Theory, fast solvers, and applications in solid mechanics”, in Cambridge University Press, 2007, ch. Introduction, isbn: 9780511618635. doi: 10.1017/CBO9780511618635.
-
[131] M. G. Larson and F. Bengzon, “The finite element method: Theory, implementation, and applications”, in Springer Berlin Heidelberg, 2013, ch. Electromagnetics, isbn: 978-3-642-33287-6. doi: 10.1007/978-3-642-33287-6_13.
-
[132] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V. Dobrev, et al., “MFEM: A modular finite element library”, Comp. & Math. with Appl., 2020. doi: 10.1016/j.camwa.2020.06.009.
-
[133] MFEM: Modular finite element methods [Software], https://mfem.org. doi: 10.11578/dc.20171025.1248.
-
[134] F. Alouges and P. Jaisson, “Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism”, Math. Models Methods Appl. Sci., vol. 16, no. 2, pp. 299–316, 2006, Cited by: 71. doi: 10.1142/S0218202506001169.
-
[135] S. Bartels, J. Ko, and A. Prohl, “Numerical analysis of an explicit approximation scheme for the landau-lifshitz-gilbert equation”, Math. Comput., vol. 77, no. 262, pp. 773–788, 2008, Cited by: 39; All Open Access, Bronze Open Access, Green Open Access. doi: 10.1090/S0025-5718-07-02079-0.
-
[136] F. Alouges, “A new finite element scheme for Landau-Lifchitz equations”, Discrete Contin. Dyn. Syst. S, vol. 1, no. 2, pp. 187–196, 2008. doi: 10.3934/dcdss.2008.1.187.
-
[137] F. Alouges, E. Kritsikis, and J.-C. Toussaint, “A convergent finite element approximation for Landau–Lifschitz–Gilbert equation”, Physica B, vol. 407, no. 9, pp. 1345–1349, 2012, 8th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2011). doi: 10.1016/j.physb.2011.11.031.
-
[138] F. Bruckner, D. Suess, M. Feischl, T. Führer, P. Goldenits, M. Page, et al., “Multiscale modeling in micromagnetics: Existence of solutions and numerical integration”, Math. Models Methods Appl. Sci., vol. 24, no. 13, pp. 2627–2662, 2014. doi: 10.1142/S0218202514500328.
-
[139] C. Abert, G. Hrkac, M. Page, D. Praetorius, M. Ruggeri, and D. Suess, “Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator”, Comp. & Math. with Appl., vol. 68, no. 6, pp. 639–654, 2014. doi: 10.1016/j.camwa.2014.07.010.
-
[140] G. Hrkac, C.-M. Pfeiler, D. Praetorius, M. Ruggeri, A. Segatti, and B. Stiftner, “Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics”, Adv. Comput. Math., vol. 45, no. 3, pp. 1329–1368, 2019. doi: 10.1007/s10444-019-09667-z.
-
[141] J. Ender, M. Mohamedou, S. Fiorentini, R. L. de Orio, S. Selberherr, W. Goes, et al., “Efficient demagnetizing field calculation for disconnected complex geometries in STT-MRAM cells”, in Proc. SISPAD Conf., 2020, pp. 213–216. doi: 10.23919/SISPAD49475.2020.9241662.
-
[142] M. Bendra, J. Ender, S. Fiorentini, T. Hadamek, R. L. de Orio, W. Goes, et al., “Finite element method approach to MRAM modeling”, in Proc. MIPRO Conf., 2021, pp. 70–73. doi: 10.23919/MIPRO52101.2021.9597194.
-
[143] S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Comprehensive modeling of coupled spin and charge transport through magnetic tunnel junctions”, in Proc. EUROSOI-ULIS Conf., © 2020 IEEE, 2020, pp. 1–4. doi: 10.1109/EUROSOI-ULIS49407.2020.9365497.
-
[144] S. Fiorentini, J. Ender, M. Mohamedou, R. L. de Orio, S. Selberherr, W. Goes, et al., “Computation of torques in magnetic tunnel junctions through spin and charge transport modeling”, in Proc. SISPAD Conf., © 2020 IEEE, 2020, pp. 209–212. doi: 10.23919/SISPAD49475.2020.9241657.
-
[145] S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Spin drift-diffusion approach for the computation of torques in multi-layered structures”, in Book of Abstracts IWCN Conf., 2021, pp. 51–52.
-
[146] S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Coupled spin and charge drift-diffusion approach applied to magnetic tunnel junctions”, Solid State Electron., vol. 186, p. 108 103, 2021. doi: 10.1016/j.sse.2021.108103.
-
[147] S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Spin and charge drift-diffusion approach to torque computation in magnetic tunnel junctions”, in Proc. SISPAD Conf., 2021, pp. 155–158. doi: 10.1109/SISPAD54002.2021.9592559.
-
[148] S. Fiorentini, J. Ender, S. Selberherr, W. Goes, and V. Sverdlov, “Spin transfer torque evaluation based on coupled spin and charge transport: A finite element method approach”, J. Syst. Cyb. Inf., vol. 20, no. 4, pp. 40–44, 2022. doi: 10.54808/JSCI.20.04.40.
-
[149] MFEM: Modular finite element methods [Software], mfem.org. doi: 10.11578/dc.20171025.1248.
-
[150] Netgen/NGSolve [Software], https://ngsolve.org/.
-
[151] S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets”, Phys. Rev. Lett., vol. 93, p. 127 204, 2004. doi: 10.1103/PhysRevLett.93.127204.
-
[152] J. Xiao, A. Zangwill, and M. D. Stiles, “Boltzmann test of Slonczewski’s theory of spin-transfer torque”, Phys. Rev. B, vol. 70, p. 172 405, 2004. doi: 10.1103/PhysRevB.70.172405.
-
[153] C. Abert, H. Sepehri-Amin, F. Bruckner, C. Vogler, M. Hayashi, and D. Suess, “Back-hopping in spin-transfer-torque devices: Possible origin and countermeasures”, Phys. Rev. Appl., vol. 9, p. 054 010, 2018. doi: 10.1103/PhysRevApplied.9.054010.
-
[154] K. Y. Camsari, S. Ganguly, D. Datta, and S. Datta, “Physics-based factorization of magnetic tunnel junctions for modeling and circuit simulation”, in Proc. IEDM Conf., 2014, 35.6.1–35.6.4. doi: 10.1109/IEDM.2014.7047177.
-
[155] A. Brataas, G. E. Bauer, and P. J. Kelly, “Non-collinear magnetoelectronics”, Phys. Rep., vol. 427, no. 4, pp. 157–255, 2006. doi: 10.1016/j.physrep.2006.01.001.
-
[156] A. Shpiro, P. M. Levy, and S. Zhang, “Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers”, Phys. Rev. B, vol. 67, p. 104 430, 2003. doi: 10.1103/PhysRevB.67.104430.
-
[157] I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, “Anomalous bias dependence of spin torque in magnetic tunnel junctions”, Phys. Rev. Lett., vol. 97, p. 237 205, 2006. doi: 10.1103/PhysRevLett.97.237205.
-
[158] D. Datta, B. Behin-Aein, S. Datta, and S. Salahuddin, “Voltage asymmetry of spin-transfer torques”, IEEE Trans. Nanotechnol., vol. 11, no. 2, pp. 261–272, 2012. doi: 10.1109/TNANO.2011.2163147.
-
[159] H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, et al., “Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions”, Nat. Phys., vol. 4, no. 1, pp. 37–41, 2008. doi: 10.1038/nphys784.
-
[160] Z. Li, S. Zhang, Z. Diao, Y. Ding, X. Tang, D. M. Apalkov, et al., “Perpendicular spin torques in magnetic tunnel junctions”, Phys. Rev. Lett., vol. 100, p. 246 602, 2008. doi: 10.1103/PhysRevLett.100.246602.
-
[161] C. Wang, Y.-T. Cui, J. Z. Sun, J. A. Katine, R. A. Buhrman, and D. C. Ralph, “Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions”, Phys. Rev. B, vol. 79, p. 224 416, 2009. doi: 10.1103/PhysRevB.79.224416.
-
[162] D. Tiwari, R. Sharma, O. G. Heinonen, J. Åkerman, and P. K. Muduli, “Influence of MgO barrier quality on spin-transfer torque in magnetic tunnel junctions”, Applied Physics Letters, vol. 112, no. 2, p. 022 406, 2018. doi: 10.1063/1.5005893.
-
[163] S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, et al., “Spin torques in ultra-scaled MRAM devices”, in Proc. ESSDERC Conf., © 2022 IEEE, 2022, pp. 348–351. doi: 10.1109/ESSDERC55479.2022.9947196.
-
[164] S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Comprehensive evaluation of torques in ultra-scaled mram devices”, Solid-State Electron., vol. 199, p. 108 491, 2023. doi: 10.1016/j.sse.2022.108491.
-
[165] P. Flauger, C. Abert, and D. Suess, “Efficient solution strategy to couple micromagnetic simulations with ballistic transport in magnetic tunnel junctions”, Phys. Rev. B, vol. 105, p. 134 407, 2022. doi: 10.1103/PhysRevB.105.134407.
-
[166] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, “Semiconductor spintronics”, Acta Phys. Slovaca, vol. 57, 2007. doi: 10.2478/v10155-010-0086-8.
-
[167] M. M. Torunbalci, P. Upadhyaya, S. A. Bhave, and K. Y. Camsari, “Modular compact modeling of MTJ devices”, IEEE Trans. Electron Devices, vol. 65, no. 10, pp. 4628–4634, 2018. doi: 10.1109/TED.2018.2863538.
-
[168] G. Hu, G. Lauer, J. Z. Sun, P. Hashemi, C. Safranski, S. L. Brown, et al., “2X reduction of STT-MRAM switching current using double spin-torque magnetic tunnel junction”, in Proc. IEDM Conf., 2021, pp. 2.5.1–2.5.4. doi: 10.1109/IEDM19574.2021.9720691.
-
[169] J. C. Slonczewski, “Currents and torques in metallic magnetic multilayers”, J. Magn. Magn. Mater., vol. 247, no. 3, pp. 324–338, 2002. doi: 10.1016/S0304-8853(02)00291-3.
List of Publications
Journal Articles
-
• S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Comprehensive evaluation of torques in ultra-scaled MRAM devices,” Solid-State Electron., vol. 199, p. 108491, 2023, doi: 10.1016/j.sse.2022.108491.
-
• S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, and V. Sverdlov, “Spin and charge drift-diffusion in ultra-scaled MRAM cells,” Sci. Rep., vol. 12, no. 1, p. 20958, Dec. 2022, doi: 10.1038/s41598-022-25586-4.
-
• S. Fiorentini, J. Ender, S. Selberherr, W. Goes, and V. Sverdlov, “Spin transfer torque evaluation based on coupled spin and charge transport: A finite element method approach,” J. Syst. Cyb. Inf., vol. 20, no. 4, pp. 40–44, 2022, doi: 10.54808/JSCI.20.04.40.
-
• M. Bendra, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Interface Effects in Ultra-Scaled MRAM Cells,” Solid-State Electron., vol. 194, p. 108373, 2022, doi: 10.1016/j.sse.2022.108373.
-
• J. Ender, S. Fiorentini, R. L. de Orio, T. Hadámek, M. Bendra, W. Goes, S. Selberherr, and V. Sverdlov, “Advances in modeling emerging magnetoresistive random access memories: From finite element methods to machine learning approaches,” Proc. SPIE Int. Soc. Opt. Eng., vol. 12157, pp. 1215708-1–1215708-14, 2022, doi: 10.1117/12.2624595.
-
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Reinforcement learning to reduce failures in SOT-MRAM switching,” Microelectron. Reliab., vol. 135, pp. 1–5, 2022, doi: 10.1016/j.microrel.2022.114570.
-
• T. Hadámek, S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, and V. Sverdlov, “Temperature increase in STT-MRAM at writing: A Fully three-dimensional finite element approach,” Solid-State Electron., vol. 193, pp. 108269-1–108269-7, 2022, doi: 10.1016/j.sse.2022.108269.
-
• N. Jørstad, S. Fiorentini, W. J. Loch, W. Goes, S. Selberherr, and V. Sverdlov, “Finite element modeling of spin-orbit torques,” Solid-State Electron., vol. 194, pp. 108323-1–108323-4, 2022, doi: 10.1016/j.sse.2022.108323.
-
• W. J. Loch, S. Fiorentini, N. Jørstad, W. Goes, S. Selberherr, and V. Sverdlov, “Double reference layer STT-MRAM structures with improved performance,” Solid-State Electron., vol. 194, pp. 108335-1–108335-4, 2022, doi:
10.1016/j.sse.2022.108335. -
• J. Ender, S. Fiorentini, R. L. de Orio, W. Goes, V. Sverdlov, and S. Selberherr, “Emerging CMOS compatible magnetic memories and logic,” IEEE J. Electron Devices Soc., vol. 9, pp. 456–463, 2021, doi: 10.1109/JEDS.2021.3066679.
-
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Improving failure rates in pulsed SOT-MRAM switching by reinforcement learning,” Microelectron. Reliab., vol. 126, pp. 114231-1–114231-5, 2021, doi: 10.1016/j.microrel.2021.114231.
-
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Reinforcement learning approach for deterministic SOT-MRAM switching,” Proc. SPIE Int. Soc. Opt. Eng., vol. 11805, pp. 1180519-1–1180519-8, 2021, doi: 10.1117/12.2593937.
-
• S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Coupled spin and charge drift-diffusion approach applied to magnetic tunnel junctions,” Solid-State Electron., vol. 186, pp. 108103, 2021, doi:
10.1016/j.sse.2021.108103. -
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Numerical analysis of deterministic switching of a perpendicularly magnetized spin-orbit torque memory cell,” IEEE J. Electron Devices Soc., vol. 9, pp. 61–67, 2021, doi: 10.1109/JEDS.2020.3039544.
-
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Optimization of a spin-orbit torque switching scheme based on micromagnetic simulations and reinforcement learning,” Micromachines, vol. 12, pp. 443, 2021, doi: 10.3390/mi12040443.
-
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Two-pulse switching scheme and reinforcement learning for energy efficient SOT-MRAM simulations,” Solid-State Electron., vol. 185, pp. 108075, 2021, doi: 10.1016/j.sse.2021.108075.
-
• S. Fiorentini, J. Ender, M. Mohamedou, S. Selberherr, R. Orio, W. Goes, and V. Sverdlov, “Comprehensive modeling of coupled spin-charge transport and magnetization dynamics in STT-MRAM cells,” Proc. SPIE Int. Soc. Opt. Eng., vol. 11470, pp. 114701B-1–114701B-7, 2020, doi: 10.1117/12.2567480.
-
• S. Fiorentini, R. Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Analysis of switching under fixed voltage and fixed current in perpendicular STT-MRAM,” IEEE J. Electron Devices Soc., vol. 8, pp. 1249–1256, 2020, doi: 10.1109/JEDS.2020.3023577.
-
• R. L. de Orio, A. Makarov, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Two-pulse magnetic field-free switching scheme for perpendicular SOT-MRAM with a symmetric square free layer,” Physica B, vol. 578, pp. 411743, 2020, doi: 10.1016/j.physb.2019.411743.
-
• R. L. de Orio, A. Makarov, S. Selberherr, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Robust magnetic field-free switching of a perpendicularly magnetized free layer for SOT-MRAM,” Solid-State Electron., vol. 168, pp. 107730-1–107730-7, 2020, doi: 10.1016/j.sse.2019.107730.
Book Contributions
-
• T. Hadámek, M. Bendra, S. Fiorentini, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, and V. Sverdlov, “Temperature increase in MRAM at writing: A finite element approach,” in Proc. EUROSOI-ULIS Conf., pp. 1–4, 2021, doi: 10.1109/EuroSOI-ULIS53016.2021.9560669.
-
• S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Comprehensive modeling of coupled spin and charge transport through magnetic tunnel junctions,” in Proc. EUROSOI-ULIS Conf., pp. 1–4, 2020, doi: 10.1109/EUROSOI-ULIS49407.2020.9365497.
-
• S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Influence of current redistribution in switching models for perpendicular STT-MRAM,” in Adv. CMOS-Comp. Semicond. Devices 19, vol. 97, no. 5, pp. 159–164, 2020, doi: 10.1149/09705.0159ecst.
-
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Reduced current spin-orbit torque switching of a perpendicularly magnetized free layer,” in Proc. EUROSOI-ULIS Conf., pp. 1–4, 2020, doi: 10.1109/EUROSOI-ULIS49407.2020.9365497.
-
• R. L. de Orio, A. Makarov, S. Selberherr, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Efficient magnetic field-free switching of a symmetric perpendicular magnetic free layer for advanced SOT-MRAM,” in Proc. EUROSOI-ULIS Conf., pp. 1–4, 2019, doi: 10.1109/EUROSOI-ULIS45800.2019.9041920.
Conference Contributions (with Proceedings-Entry)
-
• S. Fiorentini, W. J. Loch, M. Bendra, N. Jørstad, J. Ender, R. L. de Orio, T. Hadámek, W. Goes, V. Sverdlov, and S. Selberherr, “Design analysis of ultra-scaled MRAM cells,” in Proc. ICSICT Conf., 2022.
-
• V. Sverdlov, M. Bendra, S. Fiorentini, J. Ender, R. L. de Orio, T. Hadámek, W.J. Loch, N. Jørstad, W. Goes, and S. Selberherr, “Modeling advanced spintronic based magnetoresistive memory,” in Book of Abstracts IRPhE Conf., 2022.
-
• S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, W. Goes,
S. Selberherr, and V. Sverdlov, “Spin torques in ultra-scaled MRAM devices,” in
Proc. ESSDERC Conf., 2022, pp. 348–351, doi:
10.1109/ESSDERC55479.2022.9947196. -
• S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Comprehensive evaluation of torques in ultra scaled MRAM devices,” in Book of Abstracts SISPAD Conf., 2022, pp. 11–12.
-
• S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Spin transfer torque evaluation based on coupled spin and charge transport: A finite element method approach,” in Proc. WMSCI Conf., 2022, pp. 12–15, doi: 10.54808/WMSCI2022.02.12.
-
• V. Sverdlov, W. J. Loch, M. Bendra, S. Fiorentini, J. Ender, R. L. de Orio, T. Hadámek, N. Jørstad, W. Goes, and S. Selberherr, “Modeling Approach to Ultra-Scaled MRAM Cells,” in Book of Abstracts ASETMEET Conf., 2022, pp. 7–8.
-
• T. Hadámek, S. Fiorentini, M. Bendra, R. L. de Orio, W. J. Loch, N. Jorstad, S. Selberherr, W. Goes, and V. Sverdlov, “Temperature modeling in STT-MRAM: A fully three-dimensional finite element approach,” in Book of Abstracts NANO Conf., 2022.
-
• N. Jørstad, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Modeling interfacial and bulk spin-orbit torques,” in Book of Abstracts NANO Conf., 2022.
-
• R. L. de Orio, J. Ender, W. Goes, S. Fiorentini, S. Selberherr, and V. Sverdlov, “About the switching energy of a magnetic tunnel junction determined by spin-orbit torque and voltage-controlled magnetic anisotropy,” in Proc. LAEDC Conf., 2022, pp. 1–4, doi: 10.1109/LAEDC54796.2022.9908222.
-
• V. Sverdlov, M. Bendra, S. Fiorentini, J. Ender, R. Orio, T. Hadámek, W. J. Loch, N. Jørstad, W. Goes, and S. Selberherr, “Emerging devices for digital spintronics,” in Proc. GECNN Conf., 2022, pp. 32–33.
-
• M. Bendra, S. Fiorentini, J. Ender, R. Orio, T. Hadámek, W. J. Loch, N. Jørstad, S. Selberherr, W. Goes, and V. Sverdlov, “Spin transfer torques in ultra-scaled MRAM cells,” in Proc. MIPRO Conf., 2022, pp. 129–132.
-
• M. Bendra, S. Fiorentini, J. Ender, R. Orio, T. Hadámek, W. J. Loch, N. Jørstad, W. Goes, and S. Selberherr, “Interface effects in ultra-scaled MRAM cells,” in Book of Abstracts EUROSOI-ULIS Conf., 2022.
-
• V. Sverdlov, M. Bendra, S. Fiorentini, J. Ender, R. Orio, T. Hadámek, W. J. Loch, N. Jørstad, and S. Selberherr, “Modeling advanced magnetoresistive Memory: A journey from finite element methods to machine learning approaches,” in Proc. Global Webinar on Nanosc. and Nanotec., 2022.
-
• N. Jørstad, S. Fiorentini, W. Goes, V. Sverdlov, “Efficient finite element method approach to model spin orbit torque MRAM,” in Book of Abstracts MOS-AK Workshop, 2021, pp. 1.
-
• S. Fiorentini, M. Bendra, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Design support for ultra-scaled MRAM cells,” in Proc. IEDM Conf. (Special MRAM Poster Session), 2021.
-
• S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Spin and Charge Drift-Diffusion Approach to Torque Computation in Spintronic Devices,” in Book of Abstracts WINDS Conf., 2021.
-
• J. Ender, S. Fiorentini, R. L. de Orio, T. Hadámek, M. Bendra, W. Goes,
S. Selberherr, and V. Sverdlov, “Advanced modeling of emerging MRAM: From finite element methods to machine learning approaches,” in Proc. ICMNE Conf., 2021. -
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Improving failure rates in pulsed SOT-MRAM Switching by
reinforcement learning,” in Proc. ESREF Conf., 2021, pp. 1–4,
doi: 10.1016/j.microrel.2021.114231. -
• M. Bendra, J. Ender, S. Fiorentini, T. Hadámek, R. L. de Orio, W. Goes,
S. Selberherr, and V. Sverdlov, “Finite element method approach to
MRAM modeling,” in Proc. MIPRO Conf., 2021, pp. 70–73,
doi: 10.23919/MIPRO52101.2021.9597194. -
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Reinforcement learning approach for sub-critical current SOT-MRAM switching materials,” in Proc. SISPAD Conf., 2021, pp. 150–154, 10.1109/SISPAD54002.2021.9592561.
-
• S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Spin and charge drift-diffusion approach to torque computation in magnetic tunnel junctions,” in Proc. SISPAD Conf., 2021, pp. 155–158, 10.1109/SISPAD54002.2021.9592561.
-
• J. Ender, R. L. de Orio, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Reinforcement learning to reduce failures in SOT-MRAM switching,” in Proc. IPFA Conf., 2021, doi: 10.1109/IPFA53173.2021.9617362
-
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Deterministic spin-orbit switching scheme for an array of perpendicular MRAM cells suitable for large scale integration,” in Proc. TMAG Conf., 2021.
-
• T. Hadámek, M. Bendra, S. Fiorentini, J. Ender, R. L. de Orio, W. Goes, S. Selberherr, and V. Sverdlov, “Temperature increase in MRAM at writing: A finite element approach,” in Book of Abstracts EUROSOI-ULIS Conf., 2021, pp. 133–134.
-
• J. Ender, S. Fiorentini, V. Sverdlov, W. Goes, R. L. de Orio, and S. Selberherr, “Reinforcement learning approach for deterministic SOT-MRAM switching,” in Proc. SPIE Conf., 2021, pp. 11805-53.
-
• J. Ender, S. Fiorentini, S. Selberherr, W. Goes, and V. Sverdlov, “Advanced modeling of emerging nonvolatile magnetoresistive devices,” in Book of Abstracts IWCN Conf., 2021, pp. 45–46.
-
• S. Fiorentini, J. Ender, R. L. de Orio, S. Selberherr, W. Goes, and V. Sverdlov, “Spin drift-diffusion approach for the computation of torques in multi-layered structures,” in Book of Abstracts IWCN Conf., 2021, pp. 51–52.
-
• J. Ender, M. Mohamedou, S. Fiorentini, R. L. de Orio, S. Selberherr,
W. Goes, and V. Sverdlov, “Efficient demagnetizing field calculation for disconnected complex geometries in STT-MRAM cells,” in Proc. SISPAD Conf., 2020, pp. 213–216, doi: 10.23919/SISPAD49475.2020.9241662. -
• S. Fiorentini, J. Ender, M. Mohamedou, R. L. de Orio, S. Selberherr,
W. Goes, and V. Sverdlov, “Computation of torques in magnetic tunnel junctions through spin and charge transport modeling,” in Proc. SISPAD Conf., 2020, pp. 209–212, doi: 10.23919/SISPAD49475.2020.9241657. -
• R. L. de Orio, A. Makarov, W. Goes, J. Ender, S. Fiorentini, S. Selberherr, and V. Sverdlov, “Switching of a perpendicularly magnetized free-layer by spin-orbit-torques with reduced currents,” in Proc. WMSCI Conf., 2020, pp. 58–61.
-
• R. L. de Orio, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, and V. Sverdlov, “Reduced current spin-orbit torque switching of a perpendicularly magnetized free layer,” in Book of Abstracts EUROSOI-ULIS Conf., 2020, pp. 123–124.
-
• S. Fiorentini, J. Ender, M. Mohamedou, V. Sverdlov, W. Goes, R. L. de Orio, and S. Selberherr, “Comprehensive modeling of coupled spin-charge transport and magnetization dynamics in STT-MRAM cells,” in Proc. SPIE Conf., 2020, pp. 11470–44.
-
• S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Influence of current redistribution in switching models for perpendicular STT-MRAM,” in Book of Abstracts ECS Conf., 2020, doi: 10.1149/MA2020-01241389mtgabs
-
• S. Fiorentini, J. Ender, S. Selberherr, R. L. de Orio, W. Goes, and V. Sverdlov, “Comprehensive modeling of coupled spin and charge transport through magnetic tunnel junctions,” in Book of Abstracts EUROSOI-ULIS Conf., 2020, pp. 112–113.
-
• S. Fiorentini, R. L. de Orio, S. Selberherr, J. Ender, W. Goes, and V. Sverdlov, “Perpendicular STT-MRAM switching at fixed voltage and at fixed current,” in Proc. EDTM Conf., 2020, pp. 341–344, doi: 10.1109/EDTM47692.2020.9117985.
-
• V. Sverdlov, S. Fiorentini, J. Ender, W. Goes, R. L. de Orio, and S. Selberherr, “Emerging CMOS compatible magnetic memories and logic,” in Proc. LAEDC Conf., 2020, doi: 10.1109/LAEDC49063.2020.9073332.
-
• R. L. de Orio, A. Makarov, J. Ender, S. Fiorentini, W. Goes, S. Selberherr, V. Sverdlov, “A dynamical approach to fast and reliable external field free perpendicular magnetization reversal by spin-orbit torques,” in Proc. IEDM Conf. (Special MRAM Poster Session), 2019.
-
• S. Fiorentini, R. Orio, S. Selberherr, J. Ender, W. Goes, V. Sverdlov, “Comprehensive modeling of switching in perpendicular STT-MRAM,” in Proc. WINDS Conf., 2019, pp. 107–108.
-
• R. Orio, S. Selberherr, J. Ender, S. Fiorentini, W. Goes, and V. Sverdlov, “Robustness of the two-pulse switching scheme for SOT-MRAM,” in Book of Abstracts WINDS Conf., 2019, pp. 54–55.
-
• R. L. de Orio, A. Makarov, S. Selberherr, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Switching speedup of the magnetic free layer of advanced SOT-MRAM,” in Proc. ESSDERC Conf., 2019, pp. 146–149, doi: 10.1109/ESSDERC.2019.8901780.
-
• S. Fiorentini, R. L. de Orio, W. Goes, J. Ender, and V. Sverdlov, “Comprehensive comparison of switching models for perpendicular spin-transfer torque MRAM cells,” in Proc. SISPAD Conf., 2019, pp. 57–60, doi:
10.1109/SISPAD.2019.8870359. -
• R. L. de Orio, A. Makarov, S. Selberherr, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Robust magnetic field free switching scheme for perpendicular free layer in advanced spin orbit torque magnetoresistive random access memory,” in Book of Abstracts IWCN Conf., 2019, pp. 69–71.
-
• R. L. de Orio, A. Makarov, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Two-pulse magnetic field free switching scheme for advanced perpendicular SOT-MRAM,” in Book of Abstracts HMM Conf., 2019, p. 34.
-
• R. L. de Orio, A. Makarov, S. Selberherr, W. Goes, J. Ender, S. Fiorentini, and V. Sverdlov, “Efficient magnetic field free switching of symmetric perpendicular magnetic free layer for advanced SOT-MRAM,” in Book of Abstracts EUROSOI-ULIS Conf., 2019, pp. 152–153.
Conference Contributions (no Proceedings-Entry)
-
• J. Ender, R. Orio, S. Fiorentini, W. Goes, and V. Sverdlov, “Large-scale finite element micromagnetics simulations using open source software,” Poster at EMRS Conf., 2019.
-
• S. Fiorentini, R. L. de Orio, W. Goes, J. Ender, and V. Sverdlov, “Comprehensive comparison of switching models for perpendicular spin-transfer torque MRAM cells,” Poster at EMRS Conf., 2019.