Contents
Next:
1 Introduction
Up:
PhD Thesis Karl Wimmer
Previous:
Acknowledgements
Contents
Abstract
Kurzfassung
Acknowledgements
1 Introduction
1.1 Motivation
1.2 Approach and Outline
2 Ion Implantation
2.1 Physically Based Modeling
2.1.1 Monte Carlo Simulation
2.1.2 Boltzmann Transport Equation Method
2.1.3 LSS-Theory
2.2 One-Dimensional Distribution Functions
2.2.1 Vertical Distribution Function
2.2.2 Lateral Distribution Function
2.2.3 Getting the Range Parameters
2.2.4 Multilayered Structures
2.3 Two-Dimensional Profiles
2.3.1 Two-Dimensional Point Response
2.3.2 Profiles in Arbitrary Structures
2.3.3 Grid Generation and Adaption
2.4 Model Library
2.5 Applications
2.5.1 Analytical Ion Implantation - Monte Carlo Ion Implantation
2.5.2 Knock-in Implantation - A Feasibility Study for the Production of Ultra Shallow Profiles
3 Diffusion
3.1 Governing Physical Equations
3.2 Model Library
3.2.1 Coupled/Uncoupled Diffusion (Models DIFC and DIFN)
Model Equations for Electric Field Coupled Diffusion (Model DIFC)
Simplifications for Uncoupled Diffusion (Model DIFN)
Model Parameters
3.2.2 High Concentration Effects (Models DIFSCL and DIFDCL)
Dynamic Clustering (Model DIFDCL)
Static Clustering (Model DIFSCL)
Model Parameters
3.2.3 Oxidation Enhanced/Retarded Diffusion (Models OEDS and OED)
Analytical Point Defect Model for OED/ORD (Model OEDS)
Coupled Point Defect and Impurity Diffusion Model for OED/ORD
(Model OED)
3.2.4 Rapid Thermal Annealing (Model RTA)
Basic Assumptions
RTA Peculiarities
Model Parameters
3.3 Transformation Method
3.3.1 Reference Mapping Strategy
3.3.2 Differential Geometric Notation
Mapping Operator
Base Vectors
Area, Arc and Surface Elements
3.3.3 Generation of Curvilinear Coordinate Systems
Distribution of Boundary Points
Algebraic Methods
Elliptic Methods
Variational Methods
3.3.4 Transformation of Differential Operators
Gradient and Divergence
Time Derivatives and Moving Grid
Boundary Conditions
3.3.5 Transformed Physical Equations
3.4 Discretization of the PDEs
3.4.1 Divided Differences
3.4.2 Fluxes
Diffusion Fluxes
Convection Fluxes
Diffusion and Convection Fluxes
3.4.3 Divergence Operator
3.4.4 Recombination
3.4.5 Time Derivatives
3.4.6 Boundary Conditions
3.5 Solving the Nonlinear System
3.5.1 Modified Newton Method
3.5.2 Fréchet Derivative (Jacobian Matrix)
3.5.3 Automatic Local Scaling
3.5.4 Solving the Linear System
3.6 Transient Integration Algorithm
3.6.1 Time Step Adaption
3.6.2 Adaption of the Spatial Grid
Dose Conservation Criterion
Gradient Resolution Criterion
Regularity of Grid Spacing
3.7 Applications
3.7.1 Trench Isolation
3.7.2 LDD P-Channel Transistor Design
3.7.3 Field Oxide Isolation
3.7.4 RTA-Experiments
4 Oxidation
4.1 Oxide Growth Model
4.2 Applications
5 Future Work
References
List of Publications
Curriculum Vitae
About this document ...
Martin Stiftinger
Wed Oct 19 13:03:34 MET 1994