Previous:
Acknowledgment
Up:
Dissertation Markus Gritsch
Next:
List of Acronyms
Contents
List of Figures
1. Introduction and Overview
2. Semiconductor Equations
2.1 MAXWELL's Equations
2.1.1 POISSON's Equation
2.2 Phenomenological Approach
2.2.1 Balance Equations
2.2.2 Drift-Diffusion Transport Model
2.2.3 Carrier Continuity Equations
2.3 Systematic Approach
2.3.1 BOLTZMANN's Transport Equation
2.3.2 Moments Method
2.3.3 Closure
2.3.4 Generation/Recombination Processes
3. Discretization
3.1 Grid Generation
3.2 Finite Difference Method
3.2.1 One-Dimensional TAYLOR Expansion
3.2.2 One-Dimensional POISSON's Equation
3.2.3 Final Remarks
3.3 Box Integration Method
3.3.1 POISSON's Equation
3.3.2 Six Moments Transport Model
3.3.3 Final Remarks
4. Standard Energy Transport Simulations
4.1 Devices Used
4.2 Body and Bipolar Effect
4.3 Anomalous Output Characteristic
4.4 Body Contact
4.5 Cause of the Effect
4.6 Transient Behavior
4.7 Doping Dependence
4.8 Impact-Ionization
5. Modified Energy Transport Model
5.1 Monte Carlo Simulations
5.1.1 Anisotropic Distribution Function
5.1.2 Non-MAXWELLian Closure
5.2 Model Derivation
5.2.1 Anisotropic Distribution Function
5.2.2 Non-MAXWELLian Closure
5.3 Combining the Modifications
6. Modeling and Application
6.1 Temperature Tensor Modeling
6.2 Closure Relation Modeling
6.2.1 Six Moments Transport Model
6.2.2 Bulk Case
6.2.3 Inhomogeneous Case
6.3 Summarizing the Models
6.4 Using the Modified Energy Transport Model
6.5 "Well-Tempered" SOI MOSFET
6.6 Grid Matters
7. Summary and Conclusion
A. Vector and Tensor Notation
B. Driving Force Discretization
Bibliography
Own Publications
 
Previous:
Acknowledgment
Up:
Dissertation Markus Gritsch
Next:
List of Acronyms
M. Gritsch: Numerical Modeling of Silicon-on-Insulator MOSFETs
PDF