[1] M. Ikeda, H. Matsunami, and T. Tanaka. “Site effect on the impurity levels in 4H, 6H, and15R SiC”. In: Physical Review B 22.6 (Sept. 1980), pp. 2842–2854. doi: 10.1103/physrevb.22.2842.
[2] B. Baliga. “Power semiconductor device figure of merit for high-frequency applications”. In: IEEE Electron Device Letters 10.10 (Oct. 1989), pp. 455–457. doi: 10.1109/55.43098.
[3] B. J. Baliga. “Semiconductors for high-voltage, vertical channel field-effect transistors”. In: Journal of Applied Physics 53.3 (Mar. 1982), pp. 1759–1764. doi: 10.1063/1.331646.
[4] H. Nilsson and M. Hjelm. “Monte Carlo simulation of electron transport in 2H-SiC using a three valley analytical conduction band model”. In: Journal of Applied Physics 86.11 (1999), p. 6230. doi: 10.1063/1.371677.
[5] G. Gruber. “Performance and reliability limiting point defects in SiC power devices”. PhD thesis. Graz University of Technology, Dec. 2017.
[6] T. Kimoto and J. Cooper. Fundamentals of silicon carbide technology: growth, characterization, devices and applications. Ed. by T. Kimoto and J. Cooper. John Wiley & Sons, 2014. doi: 10.1002/9781118313534.
[7] W. Ching, Y.-N. Xu, P. Rulis, and L. Ouyang. “The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC”. In: Materials Science and Engineering: A 422.1-2 (Apr. 2006), pp. 147–156. doi: 10.1016/j.msea.2006.01.007.
[8] J. A. Lely. “Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der im Gitter eingebauten Verunreinigungen”. In: Angewandte Chemie. Vol. 66. 22. VCH PUBLISHERS INC 303 NW 12TH AVE, Deerfield Beach, FL 33442-1788. 1954, pp. 713–713.
[9] Y. Tairov and V. Tsvetkov. “Investigation of growth processes of ingots of silicon carbide single crystals”. In: Journal of Crystal Growth 43.2 (Mar. 1978), pp. 209–212. doi: 10.1016/0022-0248(78)90169-0.
[10] Y. Tairov and V. Tsvetkov. “General principles of growing large-size single crystals of various silicon carbide polytypes”. In: Journal of Crystal Growth 52 (Apr. 1981), pp. 146–150. doi: 10.1016/0022-0248(81)90184-6.
[11] H. Matsunani, T. Ueda, and H. Nishino. “Step-controlled epitaxial growth of SiC”. In: MRS Proceedings 162 (Jan. 1989). doi: 10.1557/proc-162-397. url: https://doi.org/10.1557/proc-162-397.
[12] A. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt. “Ionization rates and critical fields in 4H silicon carbide”. In: Applied Physics Letters 71.1 (1997), pp. 90–92. doi: 10.1063/1.119478.
[13] A. Chynoweth. “Ionization rates for electrons and holes in silicon”. In: Physical Review 109.5 (1958), p. 1537. doi: 10.1103/physrev.109.1537.
[14] D. Morelli, J. Heremans, C. Beetz, W. Woo, G. Harris, and C. Taylor. “Carrier concentration dependence of the thermal conductivity of silicon carbide”. In: Institute of Physics Conference Series. Vol. 137. Bristol [England]; Boston: Adam Hilger, Ltd., c1985-. 1994, pp. 313–316.
[15] H. Hobgood, M. Brady, W. Brixius, G. Fechko, R. Glass, D. Henshall, J. Jenny, R. Leonard, D. Malta, S. Müller, V. Tsvetkov, and C. Carter Jr. “Status of large diameter SiC crystal growth for electronic and optical applications”. In: Materials Science Forum. Vol. 338. Trans Tech Publ. 2000, pp. 3–8. doi: 10.4028/www.scientific.net/msf.338-342.3.
[16] J. Casady and R. Johnson. “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review”. In: Solid-State Electronics 39.10 (Oct. 1996), pp. 1409–1422. doi: 10.1016/0038-1101(96)00045-7.
[17] M. Willander, M. Friesel, Q.-u. Wahab, and B. Straumal. “Silicon carbide and diamond for high temperature device applications”. In: Journal of Materials Science: Materials in Electronics 17.1 (Jan. 2006), pp. 1–25. doi: 10.1007/s10854-005-5137-4.
[18] D. T. Clark, E. P. Ramsay, A. Murphy, D. Smith, R. F. Thompson, R. Young, J. Cormack, C. Zhu, S. Finney, and J. Fletcher. “High temperature silicon carbide CMOS integrated circuits”. In: Materials Science Forum 679-680 (Mar. 2011), pp. 726–729. doi: 10.4028/www.scientific.net/msf.679-680.726.
[19] A. Elasser and T. Chow. “Silicon carbide benefits and advantages for power electronics circuits and systems”. In: Proceedings of the IEEE 90.6 (June 2002), pp. 969–986. doi: 10.1109/jproc.2002.1021562.
[20] C.-M. Zetterling. Process technology for silicon carbide devices. Ed. by C.-M. Zetterling. IET, Jan. 2002. doi: 10.1049/pbep002e.
[21] M. Yoder. “Wide bandgap semiconductor materials and devices”. In: IEEE Transactions on Electron Devices 43.10 (1996), pp. 1633–1636. doi: 10.1109/16.536807.
[22] J. Hudgins, G. Simin, E. Santi, and M. Khan. “An assessment of wide bandgap semiconductors for power devices”. In: IEEE Transactions on Power Electronics 18.3 (May 2003), pp. 907–914. doi: 10.1109/tpel.2003.810840.
[23] T. Ayalew. “SiC semiconductor devices technology, modeling, and simulation”. PhD thesis. Vienna University of Technology, Jan. 2004.
[24] M. Marinella, D. Schroder, T. Isaacs-Smith, A. Ahyi, J. Williams, G. Chung, J. Wan, and M. Loboda. “Evidence of negative bias temperature instability in 4H-SiC metal oxide semiconductor capacitors”. In: Applied Physics Letters 90.25 (2007), p. 253508. doi: 10.1063/1.2748327.
[25] T. Okayama, S. Arthur, J. Garrett, and M. Rao. “Bias-stress induced threshold voltage and drain current instability in 4H–SiC DMOSFETs”. In: Solid-State Electronics 52.1 (2008), pp. 164–170. doi: 10.1016/j.sse.2007.07.031.
[26] G. Pobegen and A. Krassnig. “Instabilities of SiC MOSFETs during use conditions and following bias temperature stress”. In: International Reliability Physics Symposium (IRPS). IEEE. 2015, pp. 6C–6. doi: 10.1109/irps.2015.7112771.
[27] X. Shen, E. X. Zhang, C. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-H. Ryu, and S. T. Pantelides. “Atomic-scale origins of bias-temperature instabilities in SiC–SiO2 structures”. In: Applied Physics Letters 98.6 (Feb. 2011), p. 063507. doi: 10.1063/1.3554428.
[28] K. Chatty, S. Banerjee, T. Chow, and R. Gutmann. “Hysteresis in transfer characteristics in 4H-SiC depletion/accumulation-mode MOSFETs”. In: IEEE Electron Device Letters 23.6 (Apr. 2002), pp. 330–332. doi: 10.4028/www.scientific.net/msf.389-393.1089.
[29] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs”. In: International Electron Devices Meeting (IEDM). IEEE. 2016, pp. 10–8. doi: 10.1109/iedm.2016.7838392.
[30] C. Helms and E. Poindexter. “The silicon-silicon dioxide system: Its microstructure and imperfections”. In: Reports on Progress in Physics 57.8 (1994), p. 791. doi: 10.1088/0034-4885/57/8/002.
[31] V. Afanas’ev, A. Stesmans, F. Ciobanu, G. Pensl, K. Cheong, and S. Dimitrijev. “Mechanisms responsible for improvement of 4H–SiC/SiO2 interface properties by nitridation”. In: Applied Physics Letters 82.4 (2003), pp. 568–570. doi: 10.1063/1.1532103.
[32] P. Jamet and S. Dimitrijev. “Physical properties of N2O and NO-nitrided gate oxides grown on 4H SiC”. In: Applied Physics Letters 79.3 (2001), pp. 323–325. doi: 10.1063/1.1385181.
[33] G. Chung, C. Tin, J. Williams, K. McDonald, M. Di Ventra, S. Pantelides, L. Feldman, and R. Weller. “Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide”. In: Applied Physics Letters 76.13 (2000), pp. 1713–1715. doi: 10.1063/1.126167.
[34] S. Dhar, Y. Song, L. Feldman, T. Isaacs-Smith, C. Tin, J. Williams, G. Chung, T. Nishimura, D. Starodub, T. Gustafsson, and E. Garfunkel. “Effect of nitric oxide annealing on the interface trap density near the conduction bandedge of 4H-SiC at the oxide/(11-20) 4H-SiC interface”. In: Applied Physics Letters 84.9 (2004), pp. 1498–1500. doi: 10.1063/1.1651325.
[35] G. Chung, C. Tin, J. Williams, K. McDonald, R. Chanana, R. Weller, S. Pantelides, L. Feldman, O. Holland, M. Das, and J. Palmour. “Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide”. In: Electron Device Letters 22.4 (2001), pp. 176–178. doi: 10.1109/55.915604.
[36] E. X. Zhang, C. X. Zhang, D. M. Fleetwod, R. D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, and S. T. Pantelides. “Bias-temperature instabilities in 4H-SiC metal-oxide-semiconductor capacitors”. In: IEEE Transactions on Device and Materials Reliability 12.2 (2012), pp. 391–398. doi: 10.1109/TDMR.2012.2188404.
[37] G. Pobegen, J. Weisse, M. Hauck, H. B. Weber, and M. Krieger. “On the origin of threshold voltage instability under operating conditions of 4H-SiC n-channel MOSFETs”. In: Materials Science Forum. Vol. 858. Trans Tech Publ. 2016, pp. 473–476. doi: 10.4028/www.scientific.net/msf.858.473.
[38] T. Grasser. Bias temperature instability for devices and circuits. Ed. by T. Grasser. Springer Science & Business Media, 2013. doi: 10.1007/978-1-4614-7909-3.
[39] A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman. “Time dependence of bias-stress-induced SiC MOSFET threshold-voltage instability measurements”. In: IEEE Transactions on Electron Devices 55.8 (2008), pp. 1835–1840. doi: 10.1109/ted.2008.926672.
[40] X. Shen, S. Dhar, and S. T. Pantelides. “Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices”. In: Applied Physics Letters 106.14 (2015), p. 143504. doi: 10.1063/1.4917528.
[41] D. Ettisserry, N. Goldsman, A. Akturk, and A. Lelis. “Negative bias and temperature stress assisted activation of oxygen vacancy hole traps in 4H-silicon carbide metal-oxide-semiconductor field-effect transistors”. In: Journal of Applied Physics 118.4 (2015), p. 044507. doi: 10.1063/1.4927619.
[42] G. Pobegen and T. Grasser. “Efficient characterization of threshold voltage instabilities in SiC nMOSFETs using the concept of capture-emission-time maps”. In: Materials Science Forum. Vol. 740. Trans Tech Publ. 2013, pp. 757–760. doi: 10.4028/www.scientific.net/msf.740-742.757.
[43] T. Aichinger, G. Rescher, and G. Pobegen. “Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs”. In: Microelectronics Reliability 80 (2018), pp. 68–78. doi: 10.1016/j.microrel.2017.11.020.
[44] H. Yano, H. Nakao, T. Hatayama, Y. Uraoka, and T. Fuyuki. “Increased channel mobility in 4H-SiC UMOSFETs using on-axis substrates”. In: Materials Science Forum. Vol. 556. Trans Tech Publications. 2007, pp. 807–810. doi: 10.4028/0-87849-442-1.807.
[45] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, A. Jain, and M. Alam. “A critical re-evaluation of the usefulness of RD framework in predicting NBTI stress and recovery”. In: International Reliability Physics Symposium (IRPS). IEEE. 2011, 6A–3. doi: 10.1109/irps.2011.5784544.
[46] T. Grasser. “Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities”. In: Microelectronics Reliability 52.1 (2012), pp. 39–70. doi: 10.1016/j.microrel.2011.09.002.
[47] A.-M. El-Sayed, M. B. Watkins, T. Grasser, V. V. Afanas’ev, and A. L. Shluger. “Hydrogen-induced rupture of strained Si-O bonds in amorphous silicon dioxide”. In: Physical review letters 114.11 (2015), p. 115503. doi: 10.1103/physrevlett.114.115503.
[48] Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, and A. L. Shluger. “Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices”. In: Proceedings of the Royal Society A. Vol. 472. 2190. The Royal Society. 2016, p. 20160009. doi: 10.1098/rspa.2016.0009.
[49] A.-M. El-Sayed, A. Watkins M.B .and Shluger, and V. Afanas’ev. “Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations”. In: Microelectronic Engineering 109 (2013), pp. 68–71. doi: 10.1016/j.mee.2013.03.027.
[50] A.-M. El-Sayed, M. B. Watkins, V. V. Afanas’ ev, and A. L. Shluger. “Nature of intrinsic and extrinsic electron trapping in SiO2”. In: Physical Review B 89.12 (2014), p. 125201. doi: 10.1103/physrevb.89.125201.
[51] J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan. “Observations of NBTI-induced atomic-scale defects”. In: IEEE Transactions on Device and Materials Reliability 6.2 (2006), pp. 117–122. doi: 10.1109/irws.2005.1609551.
[52] R. H. Kikuchi and K. Kita. “Fabrication of SiO2/4H-SiC (0001) interface with nearly ideal capacitance-voltage characteristics by thermal oxidation”. In: Applied Physics Letters 105.3 (2014), p. 032106. doi: 10.1063/1.4891166.
[53] H. von Bardeleben, J. Cantin, L. Ke, Y. Shishkin, R. Devaty, and W. Choyke. “Interface defects in n-type 3C-SiC/SiO2: An EPR study of oxidized porous silicon carbide single crystals”. In: Materials Science Forum. Vol. 483-485. Trans Tech Publ. 2005, pp. 273–276. doi: 10.4028/www.scientific.net/MSF.483-485.273.
[54] J. Cantin, H. von Bardeleben, Y. Shishkin, Y. Ke, R. Devaty, and W. Choyke. “Identification of the carbon dangling bond center at the 4H-SiC/SiO2 interface by an EPR study in oxidized porous SiC”. In: Physical Review Letters 92.1 (2004), p. 015502. doi: 10.1103/physrevlett.92.015502.
[55] A. Stoneham. “Non-radiative transitions in semiconductors”. In: Reports on Progress in Physics 44.12 (1981), p. 1251. doi: 10.1088/0034-4885/44/12/001.
[56] C. Kittel. Introduction to solid state physics. Wiley, 2005. doi: 10.1063/1.3061720.
[57] T. Grasser, P. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer. “Analytic modeling of the bias temperature instability using capture/emission time maps”. In: International Electron Devices Meeting (IEDM). IEEE. 2011, pp. 27–4. doi: 10.1109/iedm.2011.6131624.
[58] Y. Wimmer. “Hydrogen related defects in amorphous SiO2 and the negative bias temperature instability”. Dissertation. Vienna University of Technology, 2016.
[59] D. Griscom, E. Friebele, and G. Sigel. “Observation and analysis of the primary 29Si hyperfine structure of the E0 center in non-crystalline SiO2”. In: Solid State Communications 15.3 (Aug. 1974), pp. 479–483. doi: 10.1016/0038-1098(74)91124-7.
[60] F. J. Feigl, W. Fowler, and K. L. Yip. “Oxygen vacancy model for the E1’ center in SiO2”. In: Solid State Communications 14.3 (Feb. 1974), pp. 225–229. doi: 10.1016/0038-1098(74)90840-0.
[61] D. L. Griscom. “Characterization of three E’-center variants in X- and γ-irradiated high purity a-SiO2”. In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1.2-3 (Feb. 1984), pp. 481–488. doi: 10.1016/0168-583x(84)90113-7.
[62] J. F. Conley, P. M. Lenahan, H. L. Evans, R. K. Lowry, and T. J. Morthorst. “Observation and electronic characterization of “new”E0 center defects in technologically relevant thermal SiO2on Si: An additional complexity in oxide charge trapping”. In: Journal of Applied Physics 76.5 (Sept. 1994), pp. 2872–2880. doi: 10.1063/1.358428.
[63] A. Kimmel, P. Sushko, A. Shluger, and G. Bersuker. “Positive and negative oxygen vacancies in amorphous silica.” In: ECS Transactions. ECS, 2009. doi: 10.1149/1.3122083.
[64] T. Grasser, B. Kaczer, P. Hehenberger, W. Gos, R. O’Connor, H. Reisinger, W. Gustin, and C. Schlunder. “Simultaneous extraction of recoverable and permanent components contributing to bias-temperature instability.” In: 2007 IEEE International Electron Devices Meeting. IEEE, 2007. doi: 10.1109/iedm.2007.4419069.
[65] T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, and H. Hutter. “Impact of hydrogen on recoverable and permanent damage following negative bias temperature stress”. In: IEEE International Reliability Physics Symposium (IRPS). IEEE. 2010, pp. 1063–1068. doi: 10.1109/irps.2010.5488672.
[66] T. Grasser and B. Kaczer. “Evidence That Two Tightly Coupled Mechanisms Are Responsible for Negative Bias Temperature Instability in Oxynitride MOSFETs”. In: IEEE Transactions on Electron Devices 56.5 (May 2009), pp. 1056–1062. doi: 10.1109/ted.2009.2015160.
[67] V. Huard. “Two independent components modeling for negative bias temperature instability”. In: 2010 IEEE International Reliability Physics Symposium. IEEE, 2010. doi: 10.1109/irps.2010.5488857.
[68] T. Grasser, T. Aichinger, H. Reisinger, J. Franco, P.-J. Wagner, M. Nelhiebel, C. Ortolland, and B. Kaczer. “On the permanent component of NBTI”. In: 2010 IEEE International Integrated Reliability Workshop Final Report. IEEE, Oct. 2010. doi: 10.1109/iirw.2010.5706472.
[69] T. Grasser, M. Waltl, G. Rzepa, W. Goes, Y. Wimmer, A.-M. El-Sayed, A. L. Shluger, H. Reisinger, and B. Kaczer. “The “permanent” component of NBTI revisited: Saturation, degradation-reversal, and annealing”. In: 2016 IEEE International Reliability Physics Symposium (IRPS). IEEE, Apr. 2016. doi: 10.1109/irps.2016.7574504.
[70] D. L. Griscom. “Diffusion of radiolytic molecular hydrogen as a mechanism for the post-irradiation buildup of interface states in SiO2-on-Si structures”. In: Journal of Applied Physics 58.7 (Oct. 1985), pp. 2524–2533. doi: 10.1063/1.335931.
[71] R. Siemieniec, W. Bergner, R. Esteve, and D. Peters. “Semiconductor device and transistor cell having a diode region”. U.S. pat. US9876103B2. url: https://patents.google.com/patent/US9876103B2/en.
[72] R. Siemieniec, D. Peters, R. Esteve, W. Bergner, D. Kuck, T. Aichinger, T. Basler, and B. Zippelius. “A SiC trench MOSFET concept offering improved channel mobility and high reliability”. In: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe). IEEE, Sept. 2017. doi: 10.23919/epe17ecceeurope.2017.8098928.
[73] S. Kyoung, Y.-s. Hong, M.-h. Lee, and T.-j. Nam. “Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics”. In: Solid State Electronics 140 (2018), pp. 23–28. issn: 0038-1101. doi: 10.1016/j.sse.2017.10.033.
[74] G. Liu, B. Tuttle, and S. Dhar. “Silicon carbide: A unique platform for metal-oxide-semiconductor physics”. In: Applied Physics Reviews 2.2 (2015), p. 021307. doi: 10.1063/1.4922748.
[75] T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, and Y. Yokotsuji. “High performance SiC trench devices with ultra-low ron”. In: 2011 International Electron Devices Meeting. IEEE, Dec. 2011. doi: 10.1109/iedm.2011.6131619.
[76] A. Ortiz-Conde, F. G. Sanchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue. “A review of recent MOSFET threshold voltage extraction methods”. In: Microelectronics Reliability 42.4-5 (2002), pp. 583–596. doi: https://doi.org/10.1016/S0026-2714(02)00027-6.
[77] K. Terada, K. Nishiyama, and K.-I. Hatanaka. “Comparison of MOSFET-threshold-voltage extraction methods”. In: Solid-state electronics 45.1 (2001), pp. 35–40. doi: https://doi.org/10.1016/S0038-1101(00)00187-8.
[78] G. Ghibaudo. “New Method for the extraction of MOSFET parameters”. In: Electronics Letters 24.9 (Apr. 1988). doi: 10.1049/el:19880369.
[79] D. Flandre, V. Kilchytska, and T. Rudenko. “gm /ID method for threshold voltage extraction applicable in advanced MOSFETs with nonlinear behavior above threshold”. In: IEEE Electron Device Letters 31.9 (2010), pp. 930–932. doi: 10.1109/LED.2010.2055829.
[80] A. Ortiz-Conde, F. J. Garcia-Sanchez, J. Muci, A. T. Barrios, J. J. Liou, and C.-S. Ho. “Revisiting MOSFET threshold voltage extraction methods”. In: Microelectronics Reliability 53.1 (2013), pp. 90–104. doi: 10.1016/j.microrel.2012.09.015.
[81] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu. “Threshold voltage extraction methods for MOS transistors”. In: Semiconductor Conference, 2000. CAS 2000 Proceedings. International. Vol. 1. IEEE. 2000, pp. 371–374. doi: 10.1109/SMICND.2000.890257.
[82] J. Brugler and P. Jespers. “Charge pumping in MOS devices”. In: Transactions on Electron Devices 16.3 (1969), pp. 297–302. doi: 10.1109/t-ed.1969.16744.
[83] R. Paulsen, R. Siergiej, M. French, and M. White. “Observation of near-interface oxide traps with the charge-pumping technique”. In: IEEE Electron Device Letters 13.12 (Dec. 1992), pp. 627–629. doi: 10.1109/55.192866.
[84] C. Scozzie and J. McGarrity. “Charge pumping measurements on SiC MOSFETs”. In: Materials Science Forum. Vol. 264. Trans Tech Publications. 1998, pp. 985–988. doi: 10.4028/www.scientific.net/msf.264-268.985.
[85] D. Habersat, A. Lelis, J. McGarrity, F. McLean, and S. Potbhare. “The effect of nitridation on SiC MOS oxides as evaluated by charge pumping”. In: Materials Science Forum. Vol. 600. Trans Tech Publications. 2009, pp. 743–746. doi: 10.4028/www.scientific.net/msf.600-603.743.
[86] A. Salinaro, G. Pobegen, T. Aichinger, B. Zippelius, D. Peters, P. Friedrichs, and L. Frey. “Charge pumping measurements on differently passivated lateral 4H-SiC MOSFETs”. In: Transactions on Electron Devices 62.1 (2015), pp. 155–163. doi: 10.1109/ted.2014.2372874.
[87] G. Groeseneken, H. Maes, N. Beltran, and R. De Keersmaecker. “A reliable approach to charge-pumping measurements in MOS transistors”. In: Transactions on Electron Devices 31.1 (1984), pp. 42–53. doi: 10.1109/t-ed.1984.21472.
[88] T. Aichinger and M. Nelhiebel. “Characterization of MOSFET interface states using the charge pumping technique”. In: Hot Carrier Degradation in Semiconductor Devices. Springer International Publishing, Oct. 2014, pp. 231–255. doi: 10.1007/978-3-319-08994-2_8.
[89] G. van den Bosch, G. Groeseneken, P. Heremans, and H. Maes. “Spectroscopic charge pumping: A new procedure for measuring interface trap distributions on MOS transistors”. In: Transactions on Electron Devices 38.8 (1991), pp. 1820–1831. doi: 10.1109/16.119021.
[90] L. Terman. “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes”. In: Solid-State Electronics 5.5 (1962), pp. 285–299. doi: 10.1016/0038-1101(62)90111-9.
[91] J. Cooper Jr. “Advances in SiC MOS technology”. In: Physica Status Solidi 162.1 (1997), pp. 305–320. doi: 10.1002/1521-396x(199707)162:1<305::aid-pssa305>3.0.co;2-7.
[92] J. N. Shenoy. “Basic MOS studies for silicon carbide power devices”. PhD thesis. Purdue University, 1996.
[93] J. Tan, M. K. Das, J. A. Cooper, and M. R. Melloch. “Metal oxide semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC”. In: Applied Physics Letters 70.17 (Apr. 1997), pp. 2280–2281. doi: 10.1063/1.119262.
[94] M. K. Das, J. A. Cooper, and M. R. Melloch. “Effect of epilayer characteristics and processing conditions on the thermally oxidized SiO2/SiC interface”. In: Journal of Electronic Materials 27.4 (Apr. 1998), pp. 353–357. doi: 10.1007/s11664-998-0414-7.
[95] Y. Q. Wu, T. Shen, P. D. Ye, and G. D. Wilk. “Photo-assisted capacitance-voltage characterization of high-quality atomic-layer-deposited Al2O3/GaN metal-oxide-semiconductor structures”. In: Applied Physics Letters 90.14 (Apr. 2007), p. 143504. doi: 10.1063/1.2719228.
[96] R. Yeluri, X. Liu, B. Swenson, J. Lu, S. Keller, and U. Mishra. “Capacitance-voltage characterization of interfaces between positive valence band offset dielectrics and wide bandgap semiconductors”. In: Journal of Applied Physics 114.8 (2013), p. 083718. doi: 10.1063/1.4819402.
[97] J. Shenoy, L. Lipkin, G. Chindalore, J. Pan, J. Cooper, J. Palmour, and M. Melloch. “Electrical characterization of the thermally oxidized SiO2/SiC interface”. In: Compound Semiconductors 141 (1995), pp. 449–454.
[98] A. Goetzberger and J. Irvin. “Low-temperature hysteresis effects in metal-oxide-silicon capacitors caused by surface-state trapping”. In: Transactions on Electron Devices 15.12 (1968), pp. 1009–1014. doi: 10.1109/t-ed.1968.16554.
[99] T. Takahagi, I. Nagai, A. Ishitani, H. Kuroda, and Y. Nagasawa. “The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching”. In: Journal of Applied Physics 64.7 (1988), pp. 3516–3521. doi: 10.1063/1.341489.
[100] D. Fenner, D. Biegelsen, and R. Bringans. “Silicon surface passivation by hydrogen termination: A comparative study of preparation methods”. In: Journal of Applied Physics 66.1 (1989), pp. 419–424. doi: 10.1063/1.343839.
[101] J. Dagata, J. Schneir, H. Harary, C. Evans, M. Postek, and J. Bennett. “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”. In: Applied Physics Letters 56.20 (1990), pp. 2001–2003. doi: 10.1063/1.102999.
[102] G. Trucks, K. Raghavachari, G. Higashi, and Y. Chabal. “Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation”. In: Physical Review Letters 65.4 (1990), p. 504. doi: 10.1103/physrevlett.65.504.
[103] E. Cartier, J. Stathis, and D. Buchanan. “Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen”. In: Applied physics letters 63.11 (1993), pp. 1510–1512. doi: 10.1063/1.110758.
[104] V. Afanas’ev and A. Stesmans. “H-complexed oxygen vacancy in SiO2: energy level of a negatively charged state”. In: Applied Physics Letters 71.26 (1997), pp. 3844–3846. doi: 10.1063/1.120521.
[105] S. Dhar, L. C. Feldman, S. Wang, T. Isaacs-Smith, and J. R. Williams. “Interface trap passivation for SiO2/(000-1) C-terminated 4H-SiC”. In: Journal of Applied Physics 98.1 (July 2005), p. 014902. doi: 10.1063/1.1938270. url: https://doi.org/10.1063/1.1938270.
[106] W.-j. Cho, R. Kosugi, K. Fukuda, K. Arai, and S. Suzuki. “Improvement of charge trapping by hydrogen post-oxidation annealing in gate oxide of 4H-SiC metal-oxide-semiconductor capacitors”. In: Applied Physics Letters 77 (2000), p. 1215. doi: 10.1063/1.1289806.
[107] S. Dhar, S. Wang, A. Ahyi, T. Isaacs-Smith, S. T. Pantelides, J. R. Williams, and L. C. Feldman. “Nitrogen and hydrogen induced trap passivation at the SiO2/4H-SiC interface”. In: Materials Science Forum. Vol. 527. Trans Tech Publications. 2006, pp. 949–954. doi: 10.4028/www.scientific.net/MSF.527-529.949.
[108] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser. “Improved interface trap density close to the conduction band edge of a-Face 4H-SiC MOSFETs revealed using the charge pumping technique”. In: Materials Science Forum. Vol. 897. Trans Tech Publ. 2017, pp. 143–146. doi: 10.4028/www.scientific.net/msf.897.143.
[109] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami. “Interface properties of metal–oxide–semiconductor structures on 4H-SiC (0001) and (1120) formed by N2 O oxidation”. In: Japanese Journal of Applied Physics 44.3R (2005), p. 1213. doi: 10.1143/JJAP.44.1213.
[110] S. Nakazawa, T. Okuda, J. Suda, T. Nakamura, and T. Kimoto. “Interface Properties of 4H-SiC (11-20) and (1-100) MOS Structures Annealed in NO”. In: Transactions on Electron Devices. Vol. 62. 2. IEEE. Feb. 2015. doi: 10.1109/TED.2014.2352117.
[111] K. Puschkarsky, H. Reisinger, T. Aichinger, W. Gustin, and T. Grasser. “Threshold voltage hysteresis in SiC MOSFETs and its impact on circuit operation”. to be published. 2017.
[112] W. Shockley and W. Read Jr. “Statistics of the recombinations of holes and electrons”. In: Physical review 87.5 (1952), p. 835. doi: 10.1142/9789814503464_0002.
[113] R. Hall. “Electron-hole recombination in germanium”. In: Physical Review 87.2 (1952), p. 387. doi: 10.1103/physrev.87.387.
[114] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara. “High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (1120) face”. In: Electron Device Letters 20.12 (1999), pp. 611–613. doi: 10.1109/55.806101.
[115] D. Okamoto, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki. “Analysis of anomalous charge-pumping characteristics on 4H-SiC MOSFETs”. In: IEEE Transactions on Electron Devices 55.8 (Aug. 2008), pp. 2013–2020. doi: 10.1109/ted.2008.926639.
[116] L. C. Yu, J. Fronheiser, V. Tilak, and K. P. Cheung. “Frequency-dependent charge pumping on 4H-SiC MOSFETs”. In: Materials Science Forum. Vol. 717. Trans Tech Publ. 2012, pp. 793–796. doi: 10.4028/www.scientific.net/msf.717-720.793.
[117] T. Kimoto, H. Yoshioka, and T. Nakamura. “Physics of SiC MOS interface and development of trench MOSFETs”. In: Workshop on Wide Bandgap Power Devices and Applications (WiPDA). IEEE. 2013, pp. 135–138. doi: 10.1109/wipda.2013.6695580.
[118] A. Chanthaphan. “Study on bias-temperature instability in 4H-SiC metal-oxide-semiconductor devices”. PhD thesis. Graduate School of Engineering, Osaka University, 2014.
[119] J. Cottom, G. Gruber, G. Pobegen, T. Aichinger, and A. L. Shluger. “Recombination centers at the 4H-SiC/SiO2 interface of technologically important SiC MOSFET devices, investigated by electrically detected magnetic resonance and ab initio modeling.” to be published. Dec. 2017.
[120] G. Gruber, J. Cottom, R. Meszaros, M. Koch, G. Pobegen, T. Aichinger, D. Peters, and P. Hadley. “Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface”. In: Journal of Applied Physics 123.16 (2017), p. 161514. doi: 10.1063/1.4985856.
[121] G. Gruber. “Summary of EDMR measurements on a-face and Si-face SiC devices.” unpublished.
[122] H. Yano, N. Kanafuji, A. Osawa, T. Hatayama, and T. Fuyuki. “Threshold voltage instability in 4H-SiC MOSFETs with phosphorus-doped and nitrided gate oxides”. In: Transactions on Electron Devices 62.2 (Feb. 2015), pp. 324–331. doi: 10.1109/ted.2014.2358260.
[123] M. Anders, P. Lenahan, and A. Lelis. “Negative bias instability in 4H-SIC MOSFETs: Evidence for structural changes in the SiC”. In: International Reliability Physics Symposium (IRPS). IEEE. 2015, 3E–4. doi: 10.1109/irps.2015.7112718.
[124] J. Campi, Y. Shi, Y. Luo, F. Yan, and J. Zhao. “Study of interface state density and effective oxide charge in post-metallization annealed SiO2-SiC structures”. In: Transactions on Electron Devices 46.3 (1999), pp. 511–519. doi: 10.1109/16.748870.
[125] G. Rescher, G. Pobegen, and T. Grasser. “Threshold voltage instabilities of present SiC-power MOSFETs under positive bias temperature stress”. In: Materials Science Forum. Vol. 858. Trans Tech Publications. 2016, pp. 481–484. doi: 10.4028/www.scientific.net/msf.858.481.
[126] G. Rescher, G. Pobegen, and T. Aichinger. “Impact of nitric oxide post oxidation anneal on the bias temperature instability and the on-resistance of 4H-SiC nMOSFETs”. In: Materials Science Forum. Vol. 821-823. Trans Tech Publications. 2015, pp. 709–712. doi: 10.4028/www.scientific.net/MSF.821-823.709.
[127] T. Okunishi, K. Hisada, H. Toyoda, Y. Yamamoto, K. Arai, Y. Yamashita, K. Yamazaki, and S. Nara. “Reliability study on positive bias temperature instability in SiC MOSFETs by fast drain current measurement”. In: Japanese Journal of Applied Physics 56.4S (2017), 04CR01. doi: 10.7567/jjap.56.04cr01.
[128] T. Aichinger, M. Nelhiebel, and T. Grasser. “On the temperature dependence of NBTI recovery”. In: Microelectronics Reliability 48.8 (2008), pp. 1178–1184. doi: 10.1016/j.microrel.2008.06.018.
[129] Procedure for wafer-level DC characterization of bias temperature instabilities. JEDEC JESD 241 Standard. JEDEC Solid State Technology Association, Dec. 2015.
[130] G. Pobegen and T. Grasser. “On the distribution of NBTI time constants on a long, temperature-accelerated time scale”. In: Transactions on Electron Devices 60.7 (2013), pp. 2148–2155. doi: 10.1109/ted.2013.2264816.
[131] S. Sze and K. K. Ng. Physics of semiconductor devices. John Wiley & Sons, Inc., Apr. 2006. doi: 10.1002/0470068329.
[132] T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, and B. Kaczer. “Gate-sided hydrogen release as the origin of "permanent" NBTI degradation: From single defects to lifetimes”. In: 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, Dec. 2015. doi: 10.1109/iedm.2015.7409739.
[133] T. Grasser, W. Goes, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V. Afanas’ev, A. Stesmans, A.-M. El-Sayed, and A. Shluger. “On the microscopic structure of hole traps in pMOSFETs”. In: 2014 IEEE International Electron Devices Meeting. IEEE, Dec. 2014. doi: 10.1109/iedm.2014.7047093.