[1] G. E. Moore. “Cramming More Components onto Integrated Circuits”. In: Proc. of the IEEE 86.1. 1998, pp. 82–85.
[2] A. Ortiz-Conde, F.J. García-Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue. “A Review of Recent MOSFET Threshold Voltage Extraction Methods”. In: Microelectronics Reliability 42 (2002), pp. 583–596.
[3] M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, and T. Grasser. “Simulation of Reliability on Nanoscale Devices”. In: Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2012, pp. 109–112.
[4] “More Moore”. In: International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2015. Chap. 5.
[5] L. Gerrer, R. Hussin, S. Amoroso, J. Franco, P. Weckx, N. Simicic, N. Horiguchi, B. Kaczer, T. Grasser, and A. Asenov. “Experimental Evidences and Simulations of Trap Generation Along a Percolation Path”. In: Proc. European Solid-State Device Research Conference (ESSDERC). 2015, pp. 226–229.
[6] S. Borkar. “Microarchitecture and Design Challenges for Gigascale Integration”. In: Proc. of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 2004, p. 3.
[7] C. R. Helms and E. H. Poindexter. “The Silicon-Silicon Dioxide System: Its Microstructure and Imperfections”. In: Reports on Progress in Physics 57.8 (1994), p. 791.
[8] P.M. Lenahan and J.F. Conley. “What Can Electron Paramagnetic Resonance Tell Us About the Si/SiO2 System?” In: Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics 16 (1998), pp. 2134–2153.
[9] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Physical Review 87 (1952), p. 835.
[10] B. E. Deal. “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”. In: IEEE Transactions on Electron Devices 27.3 (1980), pp. 606–608.
[11] D. M. Fleetwood. “‘Border Traps’ in MOS Devices”. In: IEEE Transactions on Nuclear Science 39.2 (1992), pp. 269–271.
[12] J. M. M. de Nijs, K. G. Druijf, V. V. Afanas’ev, E. van der Drift, and P. Balk. “Hydrogen Induced Donor-Type Si/SiO2 Interface States”. In: Applied Physics Letters 65 (1994), p. 2428.
[13] M.J. Kirton and M.J. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States, and Low-Frequency (1/f) Noise”. In: Advances in Physics 38.4 (1989), pp. 367–486.
[14] K. Huang and A. Rhys. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proc. Royal Society A 204 (1950), pp. 406–423.
[15] C.H. Henry and D.V. Lang. “Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP”. In: Physical Review B 15.2 (1977), pp. 989–1016.
[16] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52 (2012), pp. 39–70.
[17] A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti. “Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca-Nanometer Flash Memories”. In: IEEE Transactions on Electron Devices 56.8 (2009), pp. 1746–1752.
[18] J. Franco, B. Kaczer, M. Toledano-Luque, Ph. J. Roussel, L. Å. Ragnarsson J. Mitard, L. Witters, T. Chiarella, M. Togo, N. Horiguchi, and G. Groeseneken. “Impact of Single Charged Gate Oxide Defects on the Performance and Scaling of Nanoscaled FETs”. In: Proc. International Reliability Physics Symposium (IRPS). 2012, pp. 1–6.
[19] V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, and E. Vincent. “A Thorough Investigation of MOSFETs NBTI Degradation”. In: Microelectronics Reliability 45 (2005), pp. 83–98.
[20] D.K. Schroder. “Negative Bias Temperature Instability: What Do We Understand?” In: Microelectronics Reliability 47.6 (2007), pp. 841–852.
[21] J. Franco and B. Kaczer. “Channel Hot Carriers in SiGe and Ge pMOSFETs”. In: Hot Carrier Degradation in Semiconductor Devices. Ed. by T. Grasser. Springer-Verlag, 2015. Chap. 9, pp. 259–285.
[22] A. Bravaix and V. Huard. “Hot-Carrier Degradation Issues in Advanced CMOS Nodes”. In: Proc. European Symposium on Reliability of Electron Devices (ESREF). 2010, pp. 1267–1272.
[23] S. Tyaginov and T. Grasser. “Modeling of Hot-Carrier Degradation: Physics and Controversial Issues”. In: Proc. International Integrated Reliability Workshop (IIRW). 2012, pp. 206–215.
[24] S. Rauch and G. La Rosa. “CMOS Hot Carrier: From Physics to End of Life Projections, and Qualification”. In: Proc. International Reliability Physics Symposium (IRPS), Tutorial. 2010.
[25] P. Chaparala and D. Brisbin. “Impact of NBTI and HCI on PMOSFET Threshold Voltage Drift”. In: Microelectronics Reliability 45 (Jan. 2005), pp. 13–18.
[26] G. Rott, K. Rott, H. Reisinger, W. Gustin, and T. Grasser. “Mixture of Negative Bias Temperature Instability and Hot-Carrier Driven Threshold Voltage Degradation of 130nm Technology p-Channel Transistors”. In: Microelectronics Reliability 54.9-10 (2014), pp. 2310–2314.
[27] C. Schlünder, R. Brederlow, B. Ankele, W. Gustin, K. Goser, and R. Thewes. “Effects of Inhomogeneous Negative Bias Temperature Stress on p-Channel MOSFETs of Analog and RF Circuits”. In: Microelectronics Reliability 45.1 (2005), pp. 39–46.
[28] Y. Miura and Y. Matukura. “Investigation of Silicon-Silicon Dioxide Interface Using MOS Structure”. In: Japanese Journal of Applied Physics 5.2 (1966), p. 180.
[29] B.E. Deal, M. Sklar, A.S. Grove, and E.H. Snow. “Characteristics of the Surface-State Charge (QSS ) of Thermally Oxidized Silicon”. In: J. Electrochem. Soc. 114 (1967), p. 266.
[30] K. Jeppson and C. Svensson. “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices”. In: Journal of Applied Physics 48.5 (1977), pp. 2004–2014.
[31] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin. “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification”. In: Proc. International Reliability Physics Symposium (IRPS). 2005, p. 381.
[32] V. Huard, M. Denais, and C. Parthasarathy. “NBTI Degradation: From Physical Mechanisms to Modelling”. In: Microelectronics Reliability 48.5 (2006), pp. 1–23.
[33] M. Waltl. “Experimental Characterization of Bias Temperature Instabilities in Modern Transistor Technologies”. Dissertation. TU Wien, 2016.
[34] D. K. Schroder and J. A. Babcock. “Negative Bias Temperature Instability: Road to Cross in Deep Submicron Silicon Semiconductor Manufacturing”. In: Journal of Applied Physics 94.1 (2003), p. 1.
[35] H. Kufluoglu and M. A. Alam. “A Geometrical Unification of the Theories of NBTI and HCI Time-Exponents and its Implications for Ultra-Scaled Planar and Surround-Gate MOSFETs”. In: Proc. International Electron Devices Meeting (IEDM). 2004, p. 113.
[36] S. Mahapatra, K. Ahmed, D. Varghese, A. E. Islam, G. Gupta, L. Madhav, D. Saha, and M. A. Alam. “On the Physical Mechanism of NBTI in Silicon Oxynitride p-MOSFETs: Can Differences in Insulator Processing Conditions Resolve the Interface Trap Generation versus Hole Trapping Controversy?” In: Proc. International Reliability Physics Symposium (IRPS). 2007, pp. 1–9.
[37] M. A. Alam. “A Critical Examination of the Mechanics of Dynamic NBTI for PMOSFETs”. In: Proc. International Electron Devices Meeting (IEDM). 2003, p. 345.
[38] M. A. Alam and S. Mahapatra. “A Comprehensive Model of PMOS NBTI Degradation”. In: Microelectronics Reliability 45 (2005), pp. 71–81.
[39] H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder. “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast Vth -Measurements”. In: Proc. International Reliability Physics Symposium (IRPS). 2006, pp. 448–453.
[40] T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Gös, and B. Kaczer. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: Proc. International Reliability Physics Symposium (IRPS). 2010, pp. 16–25.
[41] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. “The Time Dependent Defect Spectroscopy for the Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors”. In: Physical Review B 82.24 (2010), p. 245318.
[42] T. Grasser and B. Kaczer. “Evidence That Two Tightly Coupled Mechanisms Are Responsible for Negative Bias Temperature Instability in Oxynitride MOSFETs”. In: IEEE Transactions on Electron Devices 56.5 (2009), pp. 1056–1062.
[43] C. Shen, M.-F. Li, C. E. Foo, T. Yang, G. S. Samudra, and Y.-C. Yeo. “Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric”. In: Proc. International Electron Devices Meeting (IEDM). 2006.
[44] T. Grasser, B. Kaczer, W. Goes, Th. Aichinger, Ph. Hehenberger, and M. Nelhiebel. “A Two-Stage Model for Negative Bias Temperature Instability”. In: Proc. International Reliability Physics Symposium (IRPS). 2009, pp. 33–44.
[45] T. Aichinger, M. Nelhiebel, and T. Grasser. “Unambiguous Identification of the NBTI Recovery Mechanism using Ultra-Fast Temperature Changes”. In: Proc. International Reliability Physics Symposium (IRPS). 2009.
[46] V. Arkhipov and A. Rudenko. “Drift and Diffusion in Materials with Traps”. In: Philosophical Magazin Part B 45.2 (1982), pp. 189–207.
[47] J. C. Dyre. “Master-Equation Approach to the Glass Transition”. In: Physical Review Letter 58 (1987), p. 792.
[48] K. S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Ep-worth, and D.M. Tennant. “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f) Noise”. In: Physical Review Letter 52.3 (1984), pp. 228–231.
[49] V. Huard, C. R. Parthasarathy, and M. Denais. “Single-Hole Detrapping Events in pMOSFETs NBTI Degradation”. In: Proc. International Integrated Reliability Workshop (IIRW). 2005, p. 5.
[50] B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. J. Roussel, and G. Groeseneken. “NBTI from the Perspective of Defect States with Widely Distributed Time Scales”. In: Proc. International Reliability Physics Symposium (IRPS). 2009, pp. 55–60.
[51] A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies. “RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study”. In: IEEE Transactions on Electron Devices 50.3 (2003), pp. 839–845.
[52] H. H. Mueller and M. Schulz. “Conductance Modulation of Submicrometer Metal-Oxide-Semiconductor Field-Effect Transistors by Single-Electron Trapping”. In: Journal of Applied Physics 79 (1996), p. 4178.
[53] E. Nicollian and J. Brews, eds. MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, New York, 1982.
[54] K. Sonoda, K. Ishikawa, T. Eimori, and O. Tsuchiya. “Discrete Dopant Effects on Statistical Variation of Random Telegraph Signal Magnitude”. In: IEEE Transactions on Electron Devices 54.8 (2007), pp. 1918–1925.
[55] B. Kaczer, Ph. J. Roussel, T. Grasser, and G. Groeseneken. “Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices – Application to NBTI”. In: Electron Device Letters 31.5 (2010), pp. 411–413.
[56] B. Kaczer, V. V. Afanas’ev, K. Rott, F. Cerbu, J. Franco, W. Goes, T. Grasser, O. Madia, A. P. D. Nguyen, A. Stesmans, H. Reisinger, M. Toledano-Luque, and P. Weckx. “Experimental Characterization of BTI Defects”. In: Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2013, pp. 444–450.
[57] H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder. “The Statistical Analysis of Individual Defects Constituting NBTI and its Implications for Modeling DC- and AC-Stress”. In: Proc. International Reliability Physics Symposium (IRPS). 2010, pp. 7–15.
[58] Y. Wimmer. “Hydrogen Related Defects in Amorphous SiO2 and the Negative Bias Temperature Instability”. Dissertation. TU Wien, 2017.
[59] F. Schanovsky, W. Gös, and T. Grasser. “An Advanced Description of Oxide Traps in MOS Transistors and its Relation to DFT”. In: Journal of Computational Electronics 9 (2010), pp. 135–140.
[60] W. Gös, F. Schanovsky, and T. Grasser. “Advanced Modeling of Oxide Defects”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer-Verlag, 2013. Chap. 16, pp. 409–446.
[61] G. Rzepa. “Microscopic Modeling of NBTI in MOS Transistors”. MA thesis. TU Wien, 2013.
[62] M. Uren, M. Kirton, and S. Collins. “Anomalous Telegraph Noise in Small-Area Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Physical Review B 37.14 (1988), pp. 8346–8350.
[63] A. F. Voter, F. Montalenti, and T. C. Germann. “Extending the Time Scale in Atomistic Simulation of Materials”. In: Annual Review of Materials Research 32.1 (2002), pp. 321–346.
[64] A. Nitzan. “Chemical Reactions in Condensed Phases”. In: Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford University Press, 2006, pp. 483–535.
[65] Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, and A. Shluger. “Role of Hydrogen in Volatile Behaviour of Defects in SiO2 -Based Electronic Devices”. In: Proc. Royal Society A 472 (2016), pp. 1–23.
[66] E. H. Poindexter and W. L. Warren. “Paramagnetic Point Defects in Amorphous Thin Films of SiO2 and Si3 N4 : Updates and Additions”. In: J. Electrochem. Soc. 142 (1995), p. 2508.
[67] T. Grasser, K. Rott, H. Reisinger, M. Waltl, P. Wagner, F. Schanovsky, W. Gös, G. Pobegen, and B. Kaczer. “Hydrogen-Related Volatile Defects as the Possible Cause for the Recoverable Component of NBTI”. In: Proc. International Electron Devices Meeting (IEDM). 2013.
[68] T. Grasser, W. Gös, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V. V. Afanas’ev, A. Stesmans, A. M. El-Sayed, and A. L. Shluger. “On the Microscopic Structure of Hole Traps in pMOSFETs”. In: Proc. International Electron Devices Meeting (IEDM). 2014.
[69] T. Grasser, M.Waltl, W. Goes, Y. Wimmer, A.-M. El-Sayed, A.L. Shluger, and B. Kaczer. “On the Volatility of Oxide Defects: Activation, Deactivation, and Transformation”. In: Proc. International Reliability Physics Symposium (IRPS). 2015, 5A.3.1–5A.3.8.
[70] Y. Wimmer, W. Gös, A. M. El-Sayed, A. Shluger, and T. Grasser. “A Density-Functional Study of Defect Volatility in Amorphous Silicon Dioxide”. In: Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2015.
[71] T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel, and B. Kaczer. “The ‘Permanent’ Component of NBTI: Composition and Annealing”. In: Proc. International Reliability Physics Symposium (IRPS). 2011, pp. 605–613.
[72] J. Franco, B. Kaczer, G. Eneman, Ph. J. Roussel, M. Cho, J. Mitard, L. Witters, T. Y. Hoffmann, G. Groeseneken, F. Crupi, and T. Grasser. “On the Recoverable and Permanent Components of Hot Carrier and NBTI in Si pMOSFETs and their Implications in Si0.45 Ge0.55 pMOSFETs”. In: Proc. International Reliability Physics Symposium (IRPS). 2011, 6A.4.1–6A.4.6.
[73] T. Grasser, M. Waltl, Y. Wimmer, W. Gös, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. M. El-Sayed, A. L. Shluger, and B. Kaczer. “Gate-Sided Hydrogen Release as the Origin of “Permanent" NBTI Degradation: From Single Defects to Lifetimes”. In: Proc. International Electron Devices Meeting (IEDM). 2015.
[74] T. Grasser, M. Waltl, G. Rzepa, W. Gös, Y. Wimmer, A. M. El-Sayed, A. L. Shluger, H. Reisinger, and B. Kaczer. “The “Permanent" Component of NBTI Revisited: Saturation Degradation-Reversal, and Annealing”. In: Proc. International Reliability Physics Symposium (IRPS). 2016, 5A.2.1–5A.2.8.
[75] A. M. El-Sayed, M. Watkins, T. Grasser, V. Afanas’ev, and A. Shluger. “Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide”. In: Physical Review Letter 114 (2015).
[76] A. M. El-Sayed, Y. Wimmer, W. Gös, T. Grasser, V. Afanas’ev, and A. Shluger. “Theoretical Models of Hydrogen-Induced Defects in Amorphous Silicon Dioxide”. In: Physical Review B 92 (1 2015), p. 014107.
[77] A. Goetzberger and H. E. Nigh. “Surface Charge After Annealing of Al-SiO2 -Si Structures Under Bias”. In: Proc. of the IEEE. 1966, pp. 1454–1454.
[78] E. Takeda, N. Suzuki, and T. Hagiwara. “Device Performance Degradation to Hot-Carrier Injection at Energies Below the Si-SiO2 Energy Barrier”. In: Proc. International Electron Devices Meeting (IEDM). 1983, pp. 396–399.
[79] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K.W. Terrill. “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”. In: IEEE Transactions on Electron Devices ED-32.2 (1985), pp. 375–385.
[80] T. Mizuno, A. Toriumi, M. Iwase, M. Takanashi, H. Niiyama, M. Fukmoto, and M. Yoshimi. “Hot-Carrier Effects in 0.1 um Gate Length CMOS Devices”. In: Proc. International Electron Devices Meeting (IEDM). 1992, pp. 695–698.
[81] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent. “Hot-carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature”. In: Proc. International Reliability Physics Symposium (IRPS). 2009, p. 531.
[82] F. C. Hsu and S. Tam. “Relationship between MOSFET Degradation and Hot-Electron-Induced Interface-State Generation”. In: Electron Device Letters 5.2 (1984), pp. 50–52.
[83] S. E. Rauch, F. J. Guarin, and G. LaRosa. “Impact of E-E Scattering to the Hot Carrier Degradation of Deep Submicron nMOSFETs”. In: Electron Device Letters 19.12 (1998), pp. 463–465.
[84] D. J. DiMaria and J. W. Stasiak. “Trap Creation in Silicon Dioxide Produced by Hot Electrons”. In: Journal of Applied Physics 65.6 (1989), 2342––2356.
[85] D. J. DiMaria and J. H. Stathis. “Anode Hole Injection, Defect Generation, and Breakdown in Ultrathin Silicon Dioxide Films”. In: Journal of Applied Physics 89.9 (2001), 5015––5024.
[86] I. Starkov and H. Enichlmair. “Local Oxide Capacitance as a Crucial Parameter for Characterization of Hot-Carrier Degradation in Long-Channel N-MOSFETs”. In: Journal of Vacuum Science and Technology B, Microelectronics and Nanometer Structures 31 (Jan. 2013), 01A118–01A118.
[87] K. Hess, L. Register, B. Tuttle, J. Lyding, and I. Kizilyalli. “Impact of Nanostructure Research on Conventional Solid-State Electronics: The Giant Isotope Effect in Hydrogen Desorption and CMOS Lifetime”. In: Physica E: Low-dimensional Systems and Nanostructures 3 (1998), pp. 1–7.
[88] K. Hess, A. Haggag, W. McMahon, K. Cheng, J. Lee, and J. Lyding. “The Physics of Determining Chip Reliability”. In: Circuits and Devices Magazine 17.3 (2001), pp. 33–38.
[89] W. McMahon, A. Haggag, and K. Hess. “Reliability Scaling Issues for Nanoscale Devices”. In: Transactions on Nanotechnology 2.1 (2003), pp. 33–38.
[90] W. McMahon, K. Matsuda, K J. Lee, Hess, and J. Lyding. “The Effects of a Multiple Carrier Model of Interface States Generation of Lifetime Extraction for MOSFETs”. In: Proc. International Conference on Modeling and Simulation of Microsystems. 2002, pp. 576–579.
[91] C. A. Billman, P. M. Lenahan, and W. Weber. “Identification of the Microscopic Structure of New Hot Carrier Damage Centers in Short Channel MOSFETs”. In: MRS Proceedings. 1997.
[92] J. T. Krick, P. M. Lenahan, and G. J. Dunn. “Direct Observation of Interfacial Point Defects Generated by Channel Hot Hole Injection in N-Channel Metal Oxide Silicon Field Effect Transistors”. In: Applied Physics Letters 59.26 (1991), pp. 3437–3439.
[93] S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmail, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser. “Interface Traps Density-of-States as a Vital Component for Hot-Carrier Degradation Modeling”. In: Microelectronics Reliability 50 (2010), pp. 1267–1272.
[94] S. E. Rauch, G. La Rosa, and F. J. Guarin. “Role of E-E Scattering in the Enhancement of Channel Hot Carrier Degradation of Deep-Submicron nMOSFETs at High VGS Conditions”. In: Transactions on Device and Materials Reliability 1.2 (2001), pp. 113–119.
[95] S. E. Rauch and G. La Rosa. “The Energy-Driven Paradigm of NMOSFET Hot-Carrier Effects”. In: Transactions on Device and Materials Reliability 5.4 (2005), pp. 701–705.
[96] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. M. Roux, and E. Vincent. “Hot-Carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature”. In: Proc. International Reliability Physics Symposium(IRPS). 2009, pp. 531–548.
[97] S. Tyaginov, M. Bina, F. Jacopo, D. Osintsev, Y. Wimmer, B. Kaczer, and T. Grasser. “Essential Ingredients for Modeling of Hot-Carrier Degradation in Ultra-Scaled MOSFETs”. In: Proc. International Integrated Reliability Workshop (IIRW). 2013.
[98] S. Tyaginov. “Physics-Based Modeling of Hot-Carrier Degradation”. In: Hot Carrier Degradation in Semiconductor Devices. Ed. by T. Grasser. Springer-Verlag, 2015. Chap. 9, pp. 105–150.
[99] M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser. “Modeling of Hot Carrier Degradation Using a Spherical Harmonics Expansion of the Bipolar Boltzmann Transport Equation”. In: Proc. International Electron Devices Meeting (IEDM). 2012, pp. 713–716.
[100] S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J. Park, H. Ceric, and T. Grasser. “Secondary Generated Holes as a Crucial Component for Modeling of HC Degradation in High-Voltage n-MOSFET”. In: Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2011, pp. 123–126.
[101] I. Starkov, H. Enichlmair, S. Tyaginov, and T. Grasser. “Analysis of the Threshold Voltage Turn-Around Effect in High-Voltage n-MOSFETs Due to Hot-Carrier Stress”. In: Proc. International Reliability Physics Symposium (IRPS). 2012, XT.7.1–XT.7.6.
[102] J. F. Chen, S. Chen, K. Wu, and C. M. Liu. “Investigation of Hot-Carrier-Induced Degradation Mechanisms in p-Type High-Voltage Drain Extended Metal-Oxide-Semiconductor Transistors”. In: Japanese Journal of Applied Physics 48.4 (2009), p. 04C039.
[103] F. Cacho, P. Mora, W. Arfaoui, X. Federspiel, and V. Huard. “HCI/BTI Coupled Model: The Path for Accurate and Predictive Reliability Simulations”. In: Proc. International Reliability Physics Symposium (IRPS). 2014, pp. 5D.4.1–5D.4.5.
[104] Y. Illarionov, M. Bina, S. Tyaginov, K. Rott, B. Kaczer, H. Reisinger, and T. Grasser. “Extraction of the Lateral Position of Border Traps in Nanoscale MOSFETs”. In: IEEE Transactions on Electron Devices 62.9 (2015), pp. 2730–2737.
[105] B. Ullmann, M. Jech, S. Tyaginov, M. Waltl, Y. Illarionov, A. Grill, K. Puschkarsky, H. Reisinger, and T. Grasser. “The Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on Single Oxide Defects”. In: Proc. International Reliability Physics Symposium (IRPS). 2017.
[106] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tariac, and N. Revil. “On-The-Fly Characterization of NBTI in Ultra-Thin Gate Oxide PMOSFETs”. In: Proc. International Electron Devices Meeting (IEDM). 2004, p. 109.
[107] H. Reisinger, U. Brunner, W. Heinrigs, W. Gustin, and C. Schlünder. “A Comparison of Fast Methods for Measuring NBTI Degradation”. In: IEEE Transactions on Device and Materials Reliability 7.4 (2007), pp. 531–539.
[108] T. Grasser, P. J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer. “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 526–535.
[109] J. Stephen Brugler and P. G. A. Jespers. “Charge Pumping in MOS Devices”. In: IEEE Transactions on Electron Devices ED-16.3 (1969), pp. 297–302.
[110] G. Groeseneken, H. Maes, N. Beltrán, and R. F. De Keersmaecker. “A Reliable Approach to Charge-Pumping Measurements in MOS Transistors”. In: IEEE Transactions on Electron Devices ED-31.1 (1984), pp. 42–53.
[111] J. L. Autran, B. Balland, and G. Barbottin. “Charge Pumping Techniques: Their Use for Diagnosis and Interface States Studies in MOS Transistors”. In: Instabilities in Silicon Devices. Ed. by G. Barbottin and A. Vapaille. Elsevier Science B.V., 1999. Chap. 6, pp. 405–493.
[112] T. Aichinger and M. Nelhiebel. “Advanced Energetic and Lateral Sensitive Charge Pumping Profiling Methods for MOSFET Device Characterization-Analytical Discussion and Case Studies”. In: IEEE Transactions on Device and Materials Reliability 8.3 (2008), pp. 509–518.
[113] J. Hilibrand and R. D. Gold. “Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements”. In: RCA Review 21 (1960), p. 245.
[114] E. Bury, B. Kaczer, H. Arimura, M. Toledano Luque, L. Å. Ragnarsson, P. Roussel, A. Veloso, S.A. Chew, T. Schram M. Togo, and G. Groeseneken. “Reliability in Gate First and Gate Last Ultra-Thin-EOT Gate Stacks Assessed with CV-eMSM BTI Characterization”. In: Proc. International Reliability Physics Symposium (IRPS). 2013, GD.3.1–GD.3.5.
[115] T. Grasser, M. Waltl, K. Puschkarsky, B. Stampfer, G. Rzepa, G. Pobegen, H. Reisinger, H. Arimura, and B. Kaczer. “Implications of Gate-Sided Hydrogen Release for Post-Stress Degradation Build-Up after BTI Stress”. In: Proc. International Reliability Physics Symposium (IRPS). 2017, 6A–2.1.
[116] B. Kaczer, T. Grasser, P. Roussel, J. Martin-Martinez, R. O’Connor, B. O’Sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing - New Evaluation and Insights”. In: Proc. International Reliability Physics Symposium (IRPS). 2008, pp. 20–27.
[117] G. Pobegen, S. Tyaginov, M. Nelhiebel, and T. Grasser. “Observation of Normally Distributed Energies for Interface Trap Recovery After Hot-Carrier Degradation”. In: Electron Device Letters 34.8 (2013), pp. 939–941.
[118] J. Canny. “A Computational Approach to Edge Detection”. In: Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–698.
[119] G. Pobegen, M. Nelhiebel, S. de Filippis, and T. Grasser. “Accurate High Temperature Measurements Using Local Polysilicon Heater Structures”. In: IEEE Transactions on Device and Materials Reliability 14.176 (2014), p. 169.
[120] T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser. “In Situ Poly Heater – A Reliable Tool for Performing Fast and Defined Temperature Switches on Chip”. In: IEEE Transactions on Device and Materials Reliability 10.1 (2010), pp. 3–8.
[121] T. Aichinger, G. Pobegen, and M. Nelhiebel. “Application of On-Chip Device Heating for BTI Investigations”. In: Bias Temperature Instability for Devices and Circuits. Ed. by T. Grasser. Springer-Verlag, 2013. Chap. 2, pp. 33–48.
[122] B. Ullmann, M. Waltl, and T. Grasser. “Characterization of the Permanent Component of MOSFET Degradation Mechanisms”. In: Proc. Vienna Young Scientists Symposium (VSS). 2015, pp. 36–37.
[123] C. Schlünder, J. Berthold, F. Proebster, A. Martin, W. Gustin, and H. Reisinger. “Degradation and Recovery of Variability Due to BTI”. In: Microelectronics Reliability 64 (2016), pp. 179–184.
[124] B. Ullmann, M. Jech, K. Puschkarsky, G. Rott, M. Waltl, Y. Illarionov, H. Reisinger, and T. Grasser. “Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on MOSFET Characteristics - Part I: Experimental”. In: IEEE Transactions on Electron Devices (submitted for publication).
[125] M. Jech, B. Ullmann, G. Rzepa, S. Tyaginov, A. Grill, M. Waltl, and T. Grasser. “Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on MOSFET Characteristics - Part II: Theory”. In: IEEE Transactions on Electron Devices (submitted for publication).
[126] MINIMOS-NT Device and Circuit Simulator, User’s Guide. Institute for Microelectronic, TU Wien.
[127] T. Grasser, P.-J. Wagner, H.Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer. “Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps”. In: Proc. International Electron Devices Meeting (IEDM). 2011, pp. 618–621.
[128] Y. Gao, A. A. Boo, Z. Q. Teo, and D. S. Ang. “On the Evolution of the Recoverable Component of the SiON, HfSiON and HfO2 P-MOSFETs under Dynamic NBTI”. In: Proc. International Reliability Physics Symposium (IRPS). 2011, pp. 935 –940.
[129] M. Duan, J. F. Zhang, Z. Ji, W. Zhang, B. Kaczer, S. De Gendt, and G. Groeseneken. “Defect Loss: A New Concept for Reliability of MOSFETs”. In: Electron Device Letters 33.4 (2012), pp. 480–482.