[1] A. Goetzberger and H.E. Nigh, “Surface charge after annealing of Al–(SiO)–Si structures under bias,” Proc.IEEE, vol. 54, no. 10, pp. 1454–1454, 1966.
[2] Y. Miura and Y. Matukura, “Investigation of silicon-silicon dioxide interface using MOS structure,” Jpn.J.Appl.Phys., vol. 5, no. 2, pp. 180–180, 1966.
[3] B.E. Deal, M. Sklar, A.S. Grove, and E.H. Snow, “Characteristics of the surface-state charge () of thermally oxidized silicon,” J.Electrochem.Soc., vol. 114, no. 3, pp. 266–274, 1967.
[4] D. Frohman-Bentchkowsky, “A fully decoded 2048-bit electrically programmable FAMOS read-only memory,” IEEE J.Solid-State Circuits, vol. 6, no. 5, pp. 301–306, 1971.
[5] A. Goetzberger and H.E. Nigh, “On the formation of surface states during stress aging of thermal Si–SiO) interfaces,” J.Electrochem.Soc., vol. 120, no. 1, pp. 90–96, 1973.
[6] K.O. Jeppson and M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of NMOS devices,” J.Appl.Phys., vol. 48, no. 5, pp. 2004–2014, 1977.
[7] J.F. Zhang and W. Eccleston, “Positive bias temperature instability in MOSFET’s,” IEEE Trans.Elect.Dev., vol. 45, no. 1, pp. 116–124, 1998.
[8] V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, and E. Vincent, “A thorough investigation of MOSFETs NBTI degradation,” Microelectron.Reliab., vol. 45, no. 1, pp. 83–98, 2005.
[9] D.K. Schroder and J.A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J.Appl.Phys., vol. 94, no. 1, pp. 1–18, 2003.
[10] D.K. Schroder, “Negative bias temperature instability: What do we understand?,” Microelectron.Reliab., vol. 94, no. 1, pp. 841–852, 2007.
[11] J.H. Stathis and S. Zafar, “The negative bias temperature instability in MOS devices: A review,” Microelectron.Reliab., vol. 46, no. 2-4, pp. 270–286, 2006.
[12] M.A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,” Microelectron.Reliab., vol. 45, no. 1, pp. 71–81, 2005.
[13] Y. Shi, T.P. Ma, S. Prasad, and S. Dhanda, “Polarity dependent gate tunneling currents in dual-gate CMOSFET’s,” IEEE Trans.Elect.Dev., vol. 45, no. 11, pp. 2355–2360, 1998.
[14] K.F. Schuegraf, C.C. King, and C. Hu, “Impact of polysilicon depletion in thin oxide MOS technology,” in Proc.VLSI, 1993, pp. 86–90.
[15] H. Reisinger, R.P. Vollertsen, P.J. Wagner, T. Huttner, A. Martin, S. Aresu, W. Gustin, T. Grasser, and C. Schlünder, “The effect of recovery on NBTI characterization of thick non-nitrided Oxides,” in Proc.IIRW, 2008, pp. 1–6.
[16] J.H. Stathis, “Percolation models for gate oxide breakdown,” J.Appl.Phys., vol. 86, no. 10, pp. 5757–5766, 1999.
[17] J.W. McPherson and R.B. Khamankar, “Molecular model for intrinsic time-dependent dielectric breakdown in SiO dielectrics and the reliability implications for hyper-thin gate oxide,” Semicond.Sci.Technol., vol. 45, no. 5, pp. 462–470, 2000.
[18] A. Teramoto, H. Umeda, K. Azamawari, K. Kobayashi, K. Shiga, J. Komori, Y. Ohno, and A. Shigetomi, “Time-dependent dielectric breakdown of SiO films in a wide electric field range,” Microelectron.Reliab., vol. 41, no. 1, pp. 47–52, 2001.
[19] B.J. Sheu, D.L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “BSIM: Berkeley short-channel IGFET model for MOS transistors,” IEEE J.Solid-State Circuits, vol. 22, no. 4, pp. 558–566, 1987.
[20] H. Haddara and D.S. Cristoloveanu, “Two-dimensional modeling of locally damaged short-channel MOSFET’s operating in the linear region,” IEEE Trans.Elect.Dev., vol. 34, no. 2, pp. 378–385, 1987.
[21] A.T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI impact on transistor circuit: Models, mechanisms scaling effects,” in Proc.IEDM, 2003, pp. 14.5.1–14.5.4.
[22] S.C. Sun and J.D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans.Elect.Dev., vol. 27, no. 8, pp. 1497–1508, 1980.
[23] F.-C. Hsu and S. Tam, “Relationship between MOSFET degradation and hot-electron-induced interface-state generation,” IEEE Electron Device Lett., vol. 5, no. 2, pp. 50–52, 1984.
[24] J.E Chung, P.-K. Ko, and C. Hu, “A model for hot-electron-induced MOSFET linear-current degradation based on mobility reduction due to interface-state generation,” IEEE Trans.Elect.Dev., vol. 38, no. 6, pp. 1362–1370, 1991.
[25] A. Koga, S. Takagi, and A. Toriumi, “A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes,” in Proc.IEDM, 1994, pp. 18.6.1–18.6.4.
[26] A.K.M. Ahsan and D.K. Schroder, “Impact of channel carrier displacement and barrier height lowering on the low-frequency noise characteristics of surface-channel n-MOSFETs,” Solid State Electron., vol. 49, no. 4, pp. 654–662, 2005.
[27] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification,” in Proc.IRPS, 2005, pp. 381–387.
[28] W. Shockley and W.T. Read, “Statistics of the recombinations of electrons and holes,” Phys.Rev., vol. 87, no. 5, pp. 835–842, 1952.
[29] S. Decker, Numerical simulations performed by Stefan Decker, Infineon Munich (Germany), process simulator TSUPREM4, device simulator MEDICI.
[30] J.-S. Lyu, K.-S. Nam, and Choochon Lee, “Determination of the interface traps density in metal oxide semiconductor field-effect transistor through subthreshold slope measurement,” Jpn.J.Appl.Phys., vol. 32, no. 10, pp. 4393–4397, 1993.
[31] N.S. Saks and M.G. Ancona, “Generation of interface states by ionizing radiation at 80 K measured by charge pumping and subthreshold slope techniques,” IEEE Trans.Nucl.Sci., vol. 34, no. 6, pp. 1347–1354, 1987.
[32] S.C. Witczak, J.S. Suehle, and M. Gaitan, “An experimental comparison of measurement techniques to extract Si–SiO interface trap density,” Solid State Electron., vol. 35, no. 3, pp. 345–355, 1992.
[33] C. Schlünder, M. Hoffmann, R.-P. Vollertsen, G. Schindler, W. Heinrigs, W. Gustin, and H. Reisinger, “A novel multi-point NBTI characterization methodology using smart intermediate stress (SIS),” in Proc.IRPS, 2008, pp. 79–86.
[34] D. Brisbin and P. Chaparala, “The effect of the subthreshold slope degradation on NBTI device characterization,” in Proc.IIRW, 2008, pp. 96–99.
[35] J.F. Zhang, Z. Ji, M.H. Chang, B. Kaczer, and G. Groeseneken, “Real Vth instability of pMOSFETs under practical operation conditions,” in Proc.IEDM, 2007, pp. 817–820.
[36] J.S. Brugler and P.G.A. Jespers, “Charge pumping in MOS devices,” IEEE Trans.Elect.Dev., vol. 16, no. 3, pp. 297–284, 1969.
[37] G. Groeseneken, H.E. Maes, N. Beltran, and R.F. De Keersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors,” IEEE Trans.Elect.Dev., vol. 31, no. 1, pp. 42–53, 1984.
[38] G. Van den Bosch and G. Goeseneken, “On the geometric component of charge-pumping current in MOSFET’s,” IEEE Electron Device Lett., vol. 14, no. 3, pp. 107–109, 1993.
[39] T.N. Duyet, H. Ishikuro, M. Takamiya, T. Saraya, and T. Hiramoto, “Suppression of geometric component of charge pumping current in thin film silicon on insulator metal-oxide-semiconductor-field-effect-transistors,” Jpn.J.Appl.Phys., vol. 37, pp. L855–L858, 1998.
[40] D. Heh, G. A. Brown, A. Diebold, and J. B. Bernstein, “Spatial distributions of trapping centers in HfO/SiO gate stack,” IEEE Trans.Elect.Dev., vol. 54, no. 6, pp. 1338–1345, 2007.
[41] S.M. Sze and K.K. Ng, Physics of semiconductor devices, A John Wiley Sons, 3rd edition, 2006.
[42] N.S. Saks, “Determination of interface trap capture cross sections using three-level charge pumping,” IEEE Electron Device Lett., vol. 11, no. 8, pp. 339–341, 1990.
[43] N.S. Saks, “Measurement of single interface trap capture cross sections with charge pumping,” Appl.Phys.Lett., vol. 70, no. 25, pp. 3380–3382, 1997.
[44] D. Vuillaume, R. Bouchakour, M. Jourdain, and J.C. Bourgoin, “Capture cross section of Si–SiO interface states generated during electron injection,” Appl.Phys.Lett., vol. 55, no. 2, pp. 153–155, 1989.
[45] D. Goguenheim, D. Vuillaume, G. Vincent, and N.M. Johnson, “Accurate measurements of capture cross sections of semiconductor insulator interface states by a trap-filling experiment: The charge-potential feedback effect,” J.Appl.Phys., vol. 68, no. 3, pp. 1104–1113, 1990.
[46] J. Albohn, W. Füssel, N.D. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross sections of defect states at the Si/SiO interface,” J.Appl.Phys., vol. 88, no. 2, pp. 842–849, 2000.
[47] E.H. Nicollian and A. Goetzberger, “MOS conductance technique for measuring surface state parameters,” Appl.Phys.Lett., vol. 7, no. 8, pp. 216–219, 1965.
[48] G. Van den Bosch, G.V. Groeseneken, P. Heremans, and H.E. Maes, “Spectroscopic charge pumping: A new procedure for measuring interface trap distributions on MOS transistors,” IEEE Trans.Elect.Dev., vol. 38, no. 8, pp. 1820–1831, 1991.
[49] T. Aichinger and M. Nelhiebel, “Advanced energetic and lateral sensitive charge pumping profiling methods for MOSFET device characterization, analytical discussion and case studies,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 8-9, pp. 509–518, 2008.
[50] E.H. Poindexter, G.J. Gerardi, M.-E. Rueckel, N.M. Johnson P.J. Caplan, and D.K. Biegelsen, “Electronic traps and P centers at the SiO/Si interface: Band-gap energy distribution,” J.Appl.Phys., vol. 56, no. 10, pp. 2844–2849, 1984.
[51] V. Huard, C.R. Parthasarath, C. Guerin, and M. Denais, “Physical modeling of negative bias temperature instabilities for predictive extrapolation,” in Proc.IRPS, 2006, pp. 733–734.
[52] T. Grasser, W. Gös, V. Sverdlov, and B. Kaczer, “The universality of NBTI relaxation and its implications for modeling and characterization,” in Proc.IRPS, 2007, pp. 268–280.
[53] T. Grasser, B. Kaczer, T. Aichinger, W. Gös, and M. Nelhiebel, “Defect creation stimulated by thermally activated hole trapping as the driving force behind negative bias temperature instability in SiO, SiON, and high– gate stacks,” in Proc.IIRW, 2008, pp. 91–95.
[54] M. Denais, Bravaix, V. Huard, C. Parthaarathy, G Ribes, F. Perrie, Y. Rey-Tauriac, and N. Revil, “On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET’s,” in Proc.IEDM, 2004, pp. 5.2.1–5.2.4.
[55] T. Grasser, P.-J. Wagner, P. Hehenberger, W. Gös, and B. Kaczer, “A rigorous study of measurement techniques for negative bias temperature instability,” in Proc.IEDM, 2007, pp. 6–11.
[56] S. Aresu, R. Pufall, M. Goroll, and W. Gustin, “NBTI on smart power technologies: A detailed analysis of two concurrent effects using a re-examined on-the-fly technique,” Microelectron.Reliab., vol. 48, no. 8-9, pp. 1310–1312, 2008.
[57] V.D. Maheta, V.D, E.N. Kumar, S. Purawat, C. Olsen, K. Ahmed, and S. Mahapatra, “Development of an ultrafast on-the-fly I technique to study NBTI in plasma and thermal oxynitride p-MOSFETs,” IEEE Trans.Elect.Dev., vol. 55, no. 10, pp. 2614–2622, 2008.
[58] Z. Ji, J.F. Zhang, M.H. Chang, B. Kaczer, and G. Groeseneken, “An analysis of the NBTI-induced threshold voltage shift evaluated by different techniques,” IEEE Trans.Elect.Dev., vol. 56, no. 5, pp. 1086–1093, 2009.
[59] A.E. Islam, E.N. Kumar, H. Das, S. Purawat, V. Maheta, H. Aono, E. Murakami, S. Mahapatra, and M.A. Alam, “Theory and practice of on-the-fly and ultra-fast VT measurements for NBTI degradation: Challenges and opportunities,” in Proc.IEDM, 2007, pp. 805–808.
[60] P. Hehenberger, P.-J. Wagner, H. Reisinger, and T. Grasser, “Comparison of fast measurement methods for short-term negative bias temperature stress and relaxation,” in Proc.ESSDERC, 2009, pp. 311–314.
[61] H. Reisinger, O. Blank, W. Heinrigs, W. Gustin, and C. Schlünder, “A Comparison of very fast to very slow components in degradation and recovery due to NBTI and bulk hole trapping to existing physical models,” IEEE Trans.Dev.Mater.Rel., vol. 7, no. 1, pp. 119–129, 2007.
[62] P. Hehenberger, P.-J. Wagner, H. Reisinger, and T. Grasser, “On the temperature and voltage dependence of short-term negative bias temperature stress,” Microelectron.Reliab., vol. 49, no. 9-11, pp. 1013–1017, 2009.
[63] W.J. Liu, Z.Y. Liu, D. Huang, C.C. Liao, L.F. Zhang, Z.H. Gan, W. Wong, C.Shen, and M.-F. Li, “On-the-fly interface trap measurement and its impact on the understanding of NBTI mechanism for p-MOSFETs with SiON gate dielectric,” in Proc.IEDM, 2007, pp. 813–816.
[64] M.-F. Li, D. Huang, C. Shen, T. Yang, W.J. Liu, and Z. Liu, “Understand NBTI mechanism by developing novel measurement techniques,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 1, pp. 62–71, 2008.
[65] P. Hehenberger, T. Aichinger, T. Grasser, W. Gös, O. Triebl, B. Kaczer, and M. Nelhiebel, “Do NBTI-induced interface states show fast recovery? A study using a corrected on-the-fly charge-pumping measurement technique,” in Proc.IRPS, 2009, pp. 1033–1038.
[66] G. Chen, M.-F. Li, C.H. Ang, J.Z. Zheng, and D.L. Kwong, “Dynamic NBTI of p-MOS transistors and its impact on MOSFET scaling,” IEEE Electron Device Lett., vol. 23, no. 12, pp. 734–736, 2002.
[67] M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Babcock, R. Lindley, P. Clifton, M. Redford, and A. Shibkov, “Dynamic recovery of negative bias temperature instability in p-type metal-oxide-semiconductor field-effect transistors,” Appl.Phys.Lett., vol. 83, no. 8, pp. 1647–1649, 2003.
[68] B. Zhu, J.S. Suehle, and J.B. Bemstein, “Mechanism for reduced NBTI effect under pulsed bias stress conditions,” in Proc.IRPS, 2004, pp. 689–690.
[69] G. Chen, K. Y. Chuah, M.-F. Li, SH Chan, C. H. Ang, J.Z. Zhcng, Y. Jin, and D. L. Kwon, “Dynamic NBTI of p-MOS transistors and its impact on device lifetime,” in Proc.IRPS, 2003, pp. 196–202.
[70] W. Abadeer and W. Ellis, “Behavior of NBTI under AC dynamic circuit conditions,” in Proc.IRPS, 2003, pp. 17–22.
[71] R. Fernández, B. Kaczer, A. Nackaerts, S. Demuynck, R. Rodríguez, M. Nafría, and G. Groeseneken, “AC NBTI studied in the 1 – 2 range on dedicated on-chip CMOS circuits,” in Proc.IEDM, 2006, pp. 1–4.
[72] V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammasel, D. Barge, and C. Ouvrard, “New characterization and modeling approach for NBTI degradation from transistor to product level,” in Proc.IEDM, 2007, pp. 797–800.
[73] B. Kaczer, V. Arkhipov, M. Jurczak, and G. Groeseneken, “Negative bias temperature instability (NBTI) in SiO and SiON gate dielectrics understood through disorder-controlled kinetics,” Microelectron.Eng., vol. 80, no. 1, pp. 122–125, 2005.
[74] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwinc, “Temperature dependence of the negative bias temperature instability in the framework of dispersive transport,” Appl.Phys.Lett., vol. 86, no. 14, pp. (143506–1)–(143506–3), 2005.
[75] B. Bindu, W. Gös, B. Kaczer, and T. Grasser, “Analytical solution of the switching trap model for negative bias temperature stress,” in Proc.IIRW, 2009, pp. 93–96.
[76] M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A comprehensive model for PMOS NBTI degradation: Recent progress,” Microelectron.Reliab., vol. 47, no. 6, pp. 853–862, 2007.
[77] T. Grasser and B. Kaczer, “Evidence that two tightly coupled mechanisms are responsible for negative bias temperature instability in oxynitride MOSFETs,” IEEE Trans.Elect.Dev., vol. 56, no. 5, pp. 1056–1062, 2009.
[78] V. Huard, C.R. Parthasarathy, C. Guerin, and M. Denais, “Physical modeling of negative bias temperature instabilities for predictive extrapolation,” in Proc.IRPS, 2006, pp. 733–734.
[79] R.A Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” J.Appl.Phys., vol. 27, no. 11, pp. 1376–1381, 1956.
[80] B.E. Deal, “The current understanding of charges in the thermally oxidized silicon structure,” J.Electrochem.Soc., vol. 121, no. 6, pp. 198–205, 1974.
[81] B.E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans.Elect.Dev., vol. 27, no. 3, pp. 606–608, 1980.
[82] A.H. Edwards, “Theory of the P center at the Si/SiO,” Phys.Rev.B, vol. 36, no. 18, pp. 9638–9648, 1987.
[83] P.M. Lenahan, “Atomic scale defects involved in MOS reliability problems,” Microelectron.Eng., vol. 69, no. 2-4, pp. 173–181, 2003.
[84] A. Stesman, “Dissociation kinetics of hydrogen-passivated P defects at the 111 Si/SiO interface,” Phys.Rev.B, vol. 61, no. 12, pp. 8393–8403, 2000.
[85] P.M. Lenahan, K.L. Brower, and P.V. Dressendorfer, “Radiation-induced trivalent silicon defect buildup at the Si–SiO interface in MOS structures,” IEEE Trans.Nucl.Sci., vol. 28, no. 6, pp. 4105–4106, 1981.
[86] L.A Ragnarssona and P. Lundgren, “Electrical characterization of P centers in (100) Si–SiO structures: The influence of surface potential on passivation during post metallization anneal,” J.Appl.Phys., vol. 88, no. 2, pp. 938–942, 2000.
[87] H. Sakaki, K. Hoh, and T. Sugano, “Determination of interface-state density and mobility ratio in silicon surface inversion layers,” IEEE Trans.Elect.Dev., vol. 17, no. 10, pp. 892–896, 1970.
[88] T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si–SiO interfaces,” J.Appl.Phys., vol. 52, no. 4, pp. 2889–2896, 1981.
[89] P.V. Gray and D.M. Brown, “Density of SiO–Si interface states,” Appl.Phys.Lett., vol. 8, no. 2, pp. 31–33, 1966.
[90] P.J. McWhorter, P.S. Wimkur, and R.A. Pastorek, “Donor/acceptor nature of radiation-induced interface traps,” Appl.Phys.Lett., vol. 35, no. 6, pp. 1154–1159, 1988.
[91] A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, and J. Lyding, “High-performance chip reliability from short-time-tests,” in Proc.IRPS, 2001, pp. 271–279.
[92] R.A.B. Devine, J.-L. Autran, W.L. Warren, K.L. Vanheusdan, and J.-C. Rostaing, “Interfacial hardness enhancement in deuterium annealed 0.25 channel metal oxide semiconductor transistors,” Appl.Phys.Lett., vol. 70, no. 22, pp. 2999–3001, 1997.
[93] P.E. Bunson, M. Di Ventra, S.T. Pantelides, D.M. Fleetwood, and R.D. Schrimpf, “Hydrogen-related defects in irradiated SiO,” IEEE Trans.Nucl.Sci., vol. 47, no. 6, pp. 2289–2296, 2000.
[94] R. Biswas, Y.-P. Li, and B.C. Pan, “Enhanced stability of deuterium in silicon,” Appl.Phys.Lett., vol. 72, no. 26, pp. 3500–3502, 1998.
[95] S.T. Pantelides, S.N. Rashkeev, R. Buczko, D.M. Fleetwood, and R.D. Schrimpf, “Reactions of hydrogen with Si–SiO interfaces,” IEEE Trans.Nucl.Sci., vol. 47, no. 6, pp. 2262–2268, 2000.
[96] K.L. Browler, “Dissociation kinetics of hydrogen passivated (111) Si–SiO interface defects,” IEEE Trans.Nucl.Sci., vol. 42, no. 6, pp. 3444–3454, 1990.
[97] J.K. Rudra and W.B. Fowler, “Oxygen vacancy and the center in crystalline SiO,” Phys.Rev.B, vol. 35, no. 15, pp. 8223–8230, 1987.
[98] R.K. Freitag, D.B. Brown, and C.M. Dozier, “Experimental evidence of two species of radiation induced trapped positive charge,” IEEE Trans.Nucl.Sci., vol. 40, no. 6, pp. 1316–1322, 1993.
[99] J.P. Campbell, P.M. Lenahan, A.T. Krishnan, and S. Krishnan, “Direct observation of the structure of defect centers involved in the negative bias temperature instability,” Appl.Phys.Lett., vol. 87, no. 20, pp. (204106–1)–(204106–3), 2005.
[100] L.P. Trombetta, F.J. Feigl, and R.J. Zeto, “Positive charge generation in metal-oxide-semiconductor capacitors,” J.Appl.Phys., vol. 69, no. 4, pp. 2512–2521, 1991.
[101] J.F. Conley and P.M. Lenahan, “Electron spin resonance evidence that centers can behave as switching oxide traps,” IEEE Trans.Nucl.Sci., vol. 42, no. 6, pp. 1744–1749, 1995.
[102] J.F. Conley, P.M. Lenahan, A.J. Lelis, and T.R. Oldham, “Electron spin resonance evidence for the structure of a switching oxide trap: Long term structural change at silicon dangling bond sites in SiO,” Appl.Phys.Lett., vol. 67, no. 15, pp. 2179–2181, 1995.
[103] V.S. Pershenkov, S.V. Cherepko, A.V. Sogoyan, V.V. Belyakov, V.N. Ulimov, V.V. Abramov, A.V. Shalnov, and V.I. Rusanovsky, “Proposed two-level acceptor-donor (AD) center and the nature of switching traps in irradiated MOS structures,” IEEE Trans.Nucl.Sci., vol. 43, no. 6, pp. 2579–2586, 1996.
[104] D.M. Fleetwood, M.R. Shaneyfelt, W.L. Warren, J.R. Schwabk, T.L. Meisenheimer, and P.S. Winokur, “Border traps: Issues for MOS radiation response and long-term reliability,” Microelectron.Reliab., vol. 35, no. 6, pp. 403–428, 1995.
[105] P.M. Lenahan and P.V. Dressendorfer, “Hole traps and trivalent silicon centers in metal/oxide/silicon devices,” J.Appl.Phys., vol. 55, no. 10, pp. 3495–3499, 1984.
[106] P.M. Lenahan and J.F. Conley, “What can electron paramagnetic resonance tell us about the Si/SiO system?,” J.Vac.Sci.&Techn.B, vol. 16, no. 4, pp. 2134–2153, 1998.
[107] F.J. Feigl, W.B. Fowler, and K.L. Yip, “Oxygen vacancy model for the center in SiO,” Solid State Commun., vol. 14, no. 3, pp. 225–229, 1974.
[108] C.J. Nicklaw, Z.-Y. Lu, D.M. Fleetwood, R.D. Schrimpf, and S. T. Pantelides, “The structure, properties, and dynamics of oxygen vacancies in amorphous SiO,” IEEE Trans.Nucl.Sci., vol. 49, no. 6, pp. 2667–2673, 2002.
[109] S.T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood, and R.D. Schrimpf, “The center and oxygen vacancies in SiO,” J.Non-Cryst.Solids, vol. 254, no. 2-9, pp. 217–223, 2008.
[110] A.J. Lelis and T.R. Oldham, “Time dependence of switching oxide traps,” IEEE Trans.Nucl.Sci., vol. 41, no. 6, pp. 1835–1843, 1994.
[111] J.R. Chavez, S.P. Karna, K. Vanheusden, C.P. Brothers, R.D. Pugh, B.K. Singaraju, W.L. Warren, and R.A.B. Devine, “Microscopic structure of the center in amorphous SiO: A first principles quantum mechanical investigation,” IEEE Trans.Nucl.Sci., vol. 44, no. 6, pp. 1799–1803, 1997.
[112] W. Gös and T. Grasser, “Charging and discharging of oxide defects in reliability issues,” in Proc.IIRW, 2007, pp. 27–32.
[113] K.L. Yip and W.B. Fowler, “Electronic structure of centers in SiO,” Phys.Rev.B, vol. 11, no. 6, pp. 2327–2338, 1975.
[114] A.J. Lelis and T.R. Oldham, “The nature of the trapped hole annealing process,” IEEE Trans.Nucl.Sci., vol. 36, no. 6, pp. 1808–1815, 1989.
[115] J.-W. Lee, M. Tomozawa, and R.K. MacCrone, “Annihilation of center defects in silica glass by hydrogen treatment,” J.Non-Cryst.Solids, vol. 67, no. 12, pp. 3510–3512, 2008.
[116] J.F. Conley and P.M. Lenahan, “Room temperature reactions involving silicon dangling bond centers and molecular hydrogen in amorphous SiO thin films on silicon,” IEEE Trans.Nucl.Sci., vol. 39, no. 6, pp. 2186–2191, 1992.
[117] T. Takahashi, B.B. Triplett, K. Yokogawa, and T. Sugano, “Electron spin resonance observation of the creation, annihilation, and charge state of the 74-Gauss doublet in device oxides damaged by soft x rays,” Appl.Phys.Lett., vol. 51, no. 17, pp. 1334–1336, 1987.
[118] P.M. Lenahan, W.L Warren, D.T. Krick, P.V. Dressendorfer, and B.B. Triplett, “Interaction of molecular hydrogen with trapped hole centers in irradiated and high field stressed metal/oxide/silicon oxides,” J.Appl.Phys., vol. 67, no. 12, pp. 7612–7614, 1990.
[119] J.K. Rudra, W.B. Fowler, and F.J. Feigl, “Model for the center in alpha quartz,” Phys.Rev.Lett., vol. 55, no. 23, pp. 2614–2617, 1985.
[120] P.E. Blöchl and J.H. Stathis, “Hydrogen electrochemistry and stress-induced leakage current in silica,” Phys.Rev.Lett., vol. 83, no. 3, pp. 372–375, 1999.
[121] M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H cracking at SiO defect centers,” J.Phys.Chem.A, vol. 104, no. 20, pp. 4674–4684, 2000.
[122] R.E. Stahlbush, B.J. Mrstik, and R.K. Lawrence, “Post-irradiation behavior of the interface state density and the trapped positive charge,” IEEE Trans.Nucl.Sci., vol. 37, no. 6, pp. 1641–1649, 1990.
[123] B. Tavel, M. Bidaud, N. Emonet, D. Barge, N. Planes, H. Brut, D. Roy, J.C. Vildeuil, R. Difrenza, K. Rochereau, M. Denais, V. Huard, P. Llinares, S. Bruyere, C. Parthasarthy, N. Revi, R. Pantel, F. Guyader, L. Vishnubotla, K. Barla, F. Amaud, P. Stolk, and M. Woo, “Thin oxynitride solution for digital and mixed-signal 65 CMOS platform,” in Proc.IEDM, 2003, pp. 27.6.1–27.6.4.
[124] G. Barbottin and A. Vapaille, Instabilities in silicon devices, Elsevier Science B.V., 3st edition, 1999.
[125] A.E. Islam, G. Gupta, S. Mahapatra, A.T. Krishnan, K. Ahmed, F. Nouri, A. Oates, and M.A. Alam, “Gate leakage vs. NBTI in plasma nitrided oxides: characterization, physical principles, and optimization,” in Proc.IEDM, 2006, pp. 1–4.
[126] J.P. Campbell, P.M. Lenahan, C.J. Cochrane, A.T. Krishnan, and S. Krishnan, “Atomic-scale defects involved in the negative-bias temperature instability,” IEEE Trans.Dev.Mater.Rel., vol. 7, no. 4, pp. 540–557, 2007.
[127] D.T. Krick, P.M. Lenahan, and J. Kanicki, “Electrically point defects in amorphous silicon nitride: An illumination and charge injection study,” J.Appl.Phys., vol. 64, no. 7, pp. 3558–3563, 1988.
[128] J.P. Campbell, P.M. Lenahan, A.T. Krishnan, and S. Krishnan, “Identification of atomic-scale defect structure involved in the negative bias temperature instability in plasma-nitrided devices,” Appl.Phys.Lett., vol. 91, no. 3, pp. (133507–1)–(133507–3), 2007.
[129] P.M. Lenahan and S.E. Curry, “First observation of the Si hyperfine spectra of silicon dangling bond centers in silicon nitride,” Appl.Phys.Lett., vol. 56, no. 2, pp. 600–603, 1990.
[130] W.L. Warren, P M. Lenahan, and S.E. Curry, “First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride,” Phys.Rev.Lett., vol. 65, no. 2, pp. 207–210, 1990.
[131] W.L. Warren and P.M. Lenahan, “Electron-nuclear double-resonance and electron-spin-resonance study of silicon dangling-bond centers in silicon nitride,” Phys.Rev.B, vol. 42, no. 3, pp. 1773–1780, 1990.
[132] W.L. Warren, J. Kanicki, and E.H. Poindexter, “Paramagnetic point defects in silicon nitride and silicon oxynitride thin films on silicon,” Colloids Surf., A, vol. 115, pp. 311–317, 1996.
[133] D. Jousse, J. Kanicki, and J.H. Stathis, “Observation of multiple silicon dangling bond configurations in silicon nitride,” Appl.Phys.Lett., vol. 54, no. 11, pp. 1043–1045, 1989.
[134] J.P. Campbell, P.M. Lenahan, A.T. Krishnan, and S. Krishnan, “Location, structure, and density of states of NBTI-induced defects in plasma nitrided pMOSFETs,” in Proc.IRPS, 2007, pp. 503–510.
[135] H. Wong and V.A. Gritsenko, “Defects in silicon oxynitride gate dielectric films,” Microelectron.Reliab., vol. 42, no. 4-5, pp. 597–605, 2002.
[136] J.T. Yount, P.M. Lenahan, and J.T. Krick, “Comparison of defect structure in NO- and NH-nitrided oxide dielectrics,” J.Appl.Phys., vol. 76, no. 3, pp. 1754–1758, 1994.
[137] F.H.P.M. Habraken, “Characterization of LPCVD and PECVD silicon oxynitride films,” Appl.Surf.Sci., vol. 30, pp. 186–196, 1987.
[138] V.J. Kapoor, R.S. Baifey, and H.J. Stein, “Hydrogen-related memory traps in thin silicon nitride films,” J.Vac.Sci.&Techn.A, vol. 1, no. 2, pp. 600–603, 1983.
[139] J.P. Campbell, P.M. Lenahan, A.T. Krishnan, and S. Krishnan, “Atomic-scale defects involved in NBTI in plasma-nitrided pMOSFETs,” in Proc.IIRW, 2006, pp. 12–17.
[140] S. Mahapatra, K. Ahmed, D. Varghese, A.E. Islam, G. Gupta, L. Madhav, D. Saha, and M.A. Alam, “On the physical mechanism of NBTI in silicon oxynitride p-MOSFETs: Can differences in insulator processing conditions resolve the interface trap generation versus hole trapping controversy?,” in Proc.IRPS, 2007, pp. 1–9.
[141] S.S. Tan, T.P. Chen, J.M. Soon, K.P. Loh, C.H. Ang, and L. Chan, “Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations,” Appl.Phys.Lett., vol. 82, no. 12, pp. 1881–1883, 2003.
[142] J.-S. Lyu, K.-S. Nam, and C. Lee, “Determination of the interface traps density in metal oxide semiconductor field-effect transistor through subthreshold slope measurement,” Jpn.J.Appl.Phys., vol. 32, no. 10, pp. 4393–4397, 1993.
[143] D.S. Ang, S. Wang, G.A. Du, and Y.Z. Hu, “A consistent deep-level hole trapping model for negative bias temperature instability,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 1, pp. 22–34, 2008.
[144] T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “A two-stage model for negative bias temperature instability,” in Proc.IRPS, 2009, pp. 33–44.
[145] T. Aichinger, M. Nelhiebel, and T. Grasser, “A combined study of p- and n-channel MOS devices to investigate the energetic distribution of oxide traps after NBTI,” IEEE Trans.Elect.Dev., vol. 56, no. 12, pp. 3018–3026, 2009.
[146] M.A. Alam, “A critical examination of the mechanics of dynamic NBTI for PMOSFETs,” in Proc.IEDM, 2003, pp. 14.4.1–14.4.4.
[147] Y. Wang, “On the recovery of interface state in pMOSFETs subjected to NBTI and SHI stress,” Solid State Electron., vol. 52, no. 2, pp. 264–268, 2008.
[148] S. Mahapatra, D. Saha, D. Varghese, and P.B. Kumar, “On the generation and recovery of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress,” IEEE Trans.Elect.Dev., vol. 53, no. 7, pp. 1583–1592, 2006.
[149] T. Yang, C. Shen, M.F. Li, C.H. Ang, C.X. Zhu, Y.-C. Yeo, G. Samudra, and D.-L. Kwong, “Interface trap passivation effect in NBTI measurement for p-MOSFET with SiON gate dielectric,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 758–760, 2005.
[150] D.S. Ang, “Observation of suppressed interface state relaxation under positive gate biasing of ultrathin oxynitride gate p-MOSFET subjected to negative bias temperature stressing,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 412–415, 2006.
[151] B. Kaczer, T. Grasser, R. Fernández, and G. Goeseneken, “Toward understanding of the wide distribution of time scales in negative bias temperature instability,” ECS Trans., vol. 6, no. 3, pp. 265–281, 2007.
[152] T.L. Tewksbury, Relaxation effects in MOS devices due to tunnel exchange with near-interface oxide traps, PhD. Thesis MIT, 1992.
[153] P.V. Sushko, S. Mukhopadhyay, A.S. Mysovsky, V.B. Sulimov, A. Taga, and A.L. Shluger, “Structure and properties of defects in amorphous silica: New insights from embedded cluster calculations,” J.Phys.-Condens.Matter, vol. 17, pp. 2115–2140, 2005.
[154] T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser, “In-situ polyheater, a reliable tool for performing fast and defined temperature switches on chip,” IEEE Trans.Dev.Mater.Rel., vol. 76, no. 7, pp. 1–7, 2009.
[155] W. Muth and W. Walter, “Bias temperature instability assessment of n- and p-channel MOS transistors using a polysilicon resistive heated scribe lane test structure,” in Proc.ESSDERC, 2007, pp. 1251–1262.
[156] C. Schluender, R.-P. Vollertsen, W. Gustin, and H. Reisinger, “A reliable and accurate approach to assess NBTI behavior of state-of-the-art pMOSFETs with fast-WLR,” in Proc.ESSDERC, 2007, pp. 131–134.
[157] T.-K Kang, C.-S Wang, and K.-C. Su, “Self-heating p-channel metal-oxide-semiconductor field-effect-transistors for reliability monitoring of negative-bias temperature instability,” Jpn.J.Appl.Phys., vol. 46, no. 12, pp. 7639–7342, 2007.
[158] C.-S. Wang, W.-C. Chang, W.-S. Ke, C.-T. Chiang, C.-F. Lee, and K.-C. Su, “Characterization of embedded poly-heater pMOSFETs and its application on in-line wafer level NBTI monitor,” in Proc.SSDM, 2005, pp. 580–581.
[159] C.-S. Wang, W.-C. Chang, W.-S. Ke, and K.-C. Su, “Ultra-fast negative bias temperature instability monitoring and end-of-life projection,” in Proc.IIRW, 2006, pp. 136–138.
[160] H. Köck, V. Košel, C. Djelassi, M. Glavanovics, and D. Pogany, “IR thermography and FEM simulation analysis of on-chip temperature during thermal-cycling power-metal reliability testing using in-situ heated structures,” Microelectron.Reliab., vol. 49, no. 9-11, pp. 1132–1136, 2009.
[161] A. Kelleha and W. Lane, “Investigation of on-chip high temperature annealing of PMOS dosimeters,” IEEE Trans.Nucl.Sci., vol. 43, no. 3, pp. 997–1001, 1996.
[162] V. Košel, R. Sleik, and M. Glavanovics, “Transient non-linear thermal FEM simulation of smart power switches and verification by measurements,” in Proc.THERMINIC, 2007, pp. 110–114.
[163] A. Ramalingam, F. Liu, S.R. Nassif, and D.Z. Pan, “Accurate thermal analysis considering nonlinear thermal conductivity,” in Proc.ISQED, 2006, pp. 643–649.
[164] C.J. Glassbrenner and G.A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys.Rev., vol. 134, no. 4, pp. 1058–1069, 1964.
[165] V. Huard, F. Ivfonsieur, G. Ribes, and S. Brnyere, “Evidence for hydrogen-related defects during NBTI stress in p-MOSFETs,” in Proc.IRPS, 2003, pp. 178–182.
[166] Y. Mitani, T. Yamaguchi, H. Satake, and A. Toriumi, “Reconsideration of hydrogen-related degradation mechanism in gate oxide,” in Proc.IRPS, 2007, pp. 226–231.
[167] T.L. Tewksbury and H.-S. Lee, “Characterization, modeling, and minimization of transient threshold voltage shifts in MOSFET’s,” IEEE J.Solid-State Circuits, vol. 29, no. 3, pp. 239–252, 1994.
[168] T. Aichinger, M. Nelhiebel, and T. Grasser, “On the temperature dependence of NBTI recovery,” in Proc.ESREF, 2008, pp. 1178–1184.
[169] T. Aichinger, M. Nelhiebel, and T. Grasser, “Unambiguous identification of the NBTI recovery mechanism using ultra fast temperature changes,” in Proc.IRPS, 2009, pp. 2–7.
[170] H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder, “Analysis of NBTI degradation- and recovery-behavior based on ultra fast Vth-measurements,” in Proc.IRPS, 2006, pp. 448–453.
[171] B. Tuttle, “Structures, energies, and vibrational properties of Si–H bond dissociation in silicon,” Phys.Rev.B, vol. 59, no. 20, pp. 12884–12889, 1999.
[172] S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, and E.R. Weber, “Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors,” Phys.Rev.B, vol. 61, no. 15, pp. 61–65, 2000.
[173] W. Gös, M. Karner, S. Tyaginov, P. Hehenberger, and T. Grasser, “Level shifts and gate interfaces as vital ingredients in modeling of charge trapping,” in Proc.SISPAD, 2008, pp. 69–72.
[174] T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser, “Observing two stage recovery of gate oxide damage created under negative bias temperature stress,” J.Appl.Phys., vol. 107, pp. (024508–1)–(024508–8), 2010.
[175] E.H. Poindexter and W.L. Warren, “Paramagnetic point defects in amorphous thin films of SiO and SiN,” J.Electrochem.Soc., vol. 142, no. 7, pp. 2508–2516, 1995.
[176] A.V. Kimmel, P.V. Sushko, A.L. Shluger, and G. Bersuker, “Positive and negative oxygen vacancies in amorphous silica,” ECS Trans., vol. 19, no. 2, pp. 3–17, 2009.
[177] V. Reddy, A.T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost, and S. Krishnan, “Impact of negative bias temperature instability on digital circuit reliability,” in Proc.IRPS, 2002, pp. 248–254.
[178] T. Aichinger, M. Nelhiebel, and T. Grasser, “Investigation of the NBTI mechanism by low temperature characterization of arbitrarily stressed PMOS devices,” IEEE Trans.Elect.Dev., 2010, submitted for publication.
[179] D. Bauza, “Rigorous analysis of two-level charge pumping: Application to the extraction of interface trap concentration versus energy profiles in metal-oxide-semiconductor transistors,” J.Appl.Phys., vol. 94, no. 5, pp. 3239–3248, 2003.
[180] M. Nelhiebel, J. Wissenwasser, T. Detzel, A. Timmerer, and E. Bertagnolli, “Hydrogen-related influence of the metalization stack on characteristics and reliability of a trench gate oxide,” Microelectron.Reliab., vol. 45, no. 9-11, pp. 1355–1359, 2005.
[181] Y. Nissan-Cohen, “The effect of hydrogen on hot carrier and radiation immunity of MOS devices,” Appl.Surf.Sci., vol. 39, no. 1-4, pp. 511–522, 1989.
[182] L.J. Jin, H.P. Kuan, D. Sim, and M. Mukhopadhyay, “Influence of hydrogen annealing on NBTI performance,” in Proc.IPFA, 2008, pp. 1–4.
[183] J.Z. Xie and S.P. Murarka, “Stability of hydrogen in silicon nitride films deposited by low-pressure and plasma enhanced chemical vapor deposition techniques,” J.Vac.Sci.&Techn.B, vol. 7, no. 2, pp. 150–152, 1989.
[184] C.Y. Chang and S.M. Sze, ULSI Technology, McGraw-Hill, 1st edition, 1996.
[185] I. Jonak-Auer, R. Meisels, and F. Kuchar, “Determination of the hydrogen concentration of silicon nitride layers by Fourier transform infrared spectroscopy,” Infrared Phys. Technol., vol. 38, no. 4, pp. 223–226, 1997.
[186] T. Aichinger, M. Nelhiebel, and T. Grasser, “Energetic distribution of oxide traps created under negative bias temperature stress and their relation to hydrogen,” Appl.Phys.Lett., vol. 96, pp. (133511–1)–(133511–3), 2010.
[187] D.E. Woon, D.S. Marynick, and S.K. Estreicher, “Titanium and copper in Si: Barriers for diffusion and interaction with hydrogen,” Phys.Rev.B, vol. 45, no. 23, pp. 13383–13389, 1992.