Next:
3.1 Sets of Partial
Up:
Dissertation Palankovski
Previous:
2.3.4 The Effect of
3. Physical Models
Subsections
3.1 Sets of Partial Differential Equations
3.1.1 The Basic Semiconductor Equations
3.1.2 The Drift-Diffusion Transport Model
3.1.3 The Hydrodynamic Transport Model
3.1.4 The Lattice Heat Flow Equation
3.1.5 The Insulator Equations
3.1.6 Boundary Conditions
3.1.6.1 Artificial Boundaries
3.1.6.2 Semiconductor-Metal Boundaries
3.1.6.2.1 Ohmic Contact
3.1.6.2.2 Schottky Contact
3.1.6.2.3 Polysilicon Contact
3.1.6.3 Insulator-Metal Boundaries
3.1.6.4 Semiconductor-Insulator Interface
3.1.6.5 Insulator-Insulator Interface
3.1.6.6 Semiconductor-Semiconductor Interface
3.1.6.6.1 Continuous Quasi-
Fermi
Level Model
3.1.6.6.2 Thermionic Field Emission Model
3.1.6.6.3 Semiconductor-Semiconductor Thermal Interface
3.2 Lattice and Thermal Properties
3.2.1 Permittivity
3.2.2 Mass Density
3.2.3 Thermal Conductivity
3.2.4 Specific heat
3.3 Band-Structure
3.3.1 Bandgap Energy
3.3.1.1 Temperature dependence of the bandgap
3.3.1.2 Semiconductor Alloys
3.3.2 Bandgap Offsets
3.3.3 Bandgap Narrowing
3.3.3.1 Dopant-Dependent Bandgap Narrowing
3.3.3.2 Physical background of the new model
3.3.3.3 Extending the new model to semiconductor alloys
3.3.4 Effective Carrier Mass
3.3.5 Effective Density of States
3.4 Carrier Mobility
3.4.1 Lattice Mobility
3.4.2 Ionized Impurity Scattering
3.4.2.1 Mobility Model of
MINIMOS 6
3.4.2.2 Model for Majority and Minority Electrons
3.4.2.3 Masetti Mobility Model
3.4.3 Surface scattering
3.4.3.1 Mobility Model of
MINIMOS 6
3.4.3.2
Lombardi
Mobility Model
3.4.4 High-Field Mobility for DD Equations
3.4.5 High-Field Mobility for HD Equations
3.4.5.1 Semiconductor Alloys
3.5 Velocity Saturation
3.6 Energy Relaxation Time
3.6.1 Methodology
3.6.1.1 The Direct Method
3.6.1.2 The Indirect Method
3.6.2 The Relaxation Time Model
3.6.2.1 Elementary and Binary Semiconductors
3.6.2.2 Semiconductor Alloys
3.6.2.3 Model Application
3.7 Generation and Recombination
3.7.1
Shockley-Read-Hall
and Surface Recombination
3.7.2
Auger
Recombination
3.7.3 Direct Recombination
3.7.4 Band-to-Band Tunneling
3.7.5 Impact Ionization
3.7.5.1 Drift-Diffusion Impact Ionization
3.7.5.2 Hydrodynamic Impact Ionization
Vassil Palankovski
2001-02-28