Next:
Curriculum Vitae
Up:
.
Previous:
List of Figures
List of Tables
2.1.
Naming convention of the frequency bands.
2.2.
Comparison of different device simulators, (DD) drift-diffusion, (ET) energy transport, (HD) hydrodynamic transport, (TE) thermionic emission, (TFE) thermionic field emission.
3.1.
Minimum valley as a function of material composition.
3.2.
Mass density parameters for semiconductors and insulators.
3.3.
Relative static permittivity parameter values for binary semiconductors and insulators.
3.4.
Relative static permittivity parameters for ternary alloys.
3.5.
Band gap parameters for elementary and binary semiconductors.
3.6.
Additional band gap parameters for binary semiconductors.
3.7.
Band gap parameters for ternary semiconductors.
3.8.
Band gap offsets for basic semiconductors.
3.9.
Effective carrier masses for binary III-V semiconductors at
= 300 K.
3.10.
Model parameters of the relative carrier masses for the temperature dependence and for the ternary III-V semiconductors at
= 300 K.
3.11.
Model parameters of the relative carrier masses for ternary III-V semiconductors.
3.12.
Model parameters for effective density of states for basic semiconductors.
3.13.
Low field mobility for basic semiconductors,
see text for InAlAs.
3.14.
Model parameters for the description of the impurities.
3.15.
Bowing parameters for ternary alloys for harmonic bowing in (
3.42
).
3.16.
High-field parameters for the DD model.
3.17.
High-field parameters for the DD solution.
3.18.
Model parameters for the bulk saturation velocity.
3.19.
Model parameters for the saturation velocity.
3.20.
Constant energy relaxation times
fitted for III-V HEMTs.
3.21.
Energy relaxation times for electrons and holes in III-V semiconductors.
3.22.
Composition dependence of the III-V ternary semiconductors.
3.23.
Relative Shockley-Read-Hall recombination model parameter values.
3.24.
Model parameters for direct recombination at
= 300 K.
3.25.
Model parameters for Auger generation/recombination at
= 300 K.
3.26.
Impact Ionization parameters in bulk III-V binary semiconductors, diode: pn-diode measurements, MC.: Monte Carlo simulation.
3.27.
Impact ionization parameters in bulk III-V ternary semiconductors.
3.28.
Impact ionization parameters for the model in bulk III-V ternary semiconductors [
221
].
3.29.
Measured impact ionization parameters for InP as a function of lattice temperature.
3.30.
Impact ionization rates according to the modeling approach.
3.31.
Modeled HD impact ionization rates for electrons and holes in III-V semiconductors.
3.32.
Impact ionization rates in bulk III-V semiconductors for the simplified impact ionization model.
3.33.
Tunneling parameters for various materials.
3.34.
Thermal conductivity coefficients in basic semiconductors and insulators.
3.35.
Bowing parameters for the thermal conductivity of ternary bulk III-V semiconductors.
3.36.
Heat capacity parameters for bulk III-V semiconductors and insulators.
3.37.
Energies of the pinned Fermi level.
4.1.
Values for the different resistivities of IC metalization.
4.2.
Intrinsic RF-simulation results supplied by
PARAS
for a pseudomorphic HEMT.
4.3.
Applied resistive parasitic elements.
4.4.
Applied parasitic elements.
4.5.
Different definitions of delay times and extraction procedures.
4.6.
Delay times and transistor parameters for Methodology I, given scaled to the gate-width and for a 10
m gate-width HEMT.
4.7.
Delay times for different components according to Methodology II [
241
].
5.1.
Final statistics: factor matrix.
6.1.
Transient time constants obtained by 1/f measurements.
B.1.
Tunneling parameter for various materials.
C.1.
Correlation matrix of the example.
C.2.
Anti-image covariance and correlation matrix of the example.
Quay
2001-12-21